scholarly journals Mechanical Properties of Wheat Grains at Compression

2021 ◽  
Vol 24 (4) ◽  
pp. 202-208
Author(s):  
Ľubomír Kubík ◽  
Monika Božiková ◽  
Viera Kažimírová

Abstract Hook’s law for evaluation of the modulus of elasticity of wheat grains and its general behaviour under compressive loads were studied. Whole specimens were subjected to compressive loading between metal parallel plates. The mechanical properties of grains were determined in terms of average failure strengths of grain bran and whole grain; deformation; and modulus of elasticity. The mechanical properties of very dry grains of the winter wheat Triticum aestivum L. with the moisture content of 10.3% were studied. The failure strength of grain bran was 4.43 MPa at the deformation of 10.7%, and the failure strength of whole grains was 4.88 MPa at the deformation of 13.5%. The modulus of elasticity of grains was 43.67 MPa. The apparent energy density at bran failure strength was 0.261 MJ·m−3, and 0.470 MJ·m−3 on the level of grain failure strength of the whole grain. The bran border structure of central inner part of grains was studied using microscope digital sections of longitudinal cuts of the grains using the image computer processing method. The area proportion of starch and pericarp of the border parts of grains was studied to describe the border texture of central sections of grains.

2018 ◽  
Vol 64 (No. 2) ◽  
pp. 77-84
Author(s):  
Basati Zahra ◽  
Rasekh Mansour ◽  
Abbaspour-Gilandeh Yousef

Considering the fact that the presence of bug-damaged wheat in the bulk results in a decrease of the flour quality and its final product, which is bread, it is necessary to differentiate the bug-damaged wheat grains from the healthy ones. Therefore, the present study investigated the mechanical properties of bug-damaged and healthy wheat grains of the Azar cultivar. By making use of these mechanical properties, it would be possible to provide a more precise texture identification of the bug-damaged wheat grains compared to the healthy ones. In this study, the mechanical properties (rupture energy, toughness and apparent elastic coefficient) were determined under compressive loading, with four levels of loading velocity (5, 15, 25 and 35 mm.min<sup>–1</sup>) and four levels of moisture content (9, 11.5, 14 and 16.5% wet basis) in both bug-damaged and healthy wheat grains. Due to the significant difference in the mean value of apparent elastic coefficient between the bug-damaged grains (74.779 MPa) and the healthy ones (289.071 MPa), this parameter can be employed as the most appropriate factor to distinguish the bug-damaged wheat grains from the healthy ones. 


Author(s):  
Jiří Holan ◽  
Lukáš Merenda

This thesis deals with an examination of mechanical properties of ammonia treated beach wood with a trademark Lignamon. For determination mechanical properties were used procedures especially based on ČSN. From the results is noticeable increased density of wood by 22% in comparison with untreated beach wood, which makes considerable increase of the most mechanical wood properties. Considering failure strength was raised by 32% and modulus of elasticity was raised at average about 46%.


2016 ◽  
Vol 61 (Special Issue) ◽  
pp. S1-S8 ◽  
Author(s):  
Ľ. Kubík ◽  
V. Kažimírová

The paper deals with the evaluation of mechanical properties of the cylinder pellet samples. The pellets were made from hay by the granulating machine MGL 200 (Kovonovak) provided by the Department of Production Engineering, Slovak University of Agriculture in Nitra. The pellets were submitted to compressive loading. The compressive loading curves of dependencies of force on strain and force on time were realised by the test stand Andilog Stentor 1000. Certain mechanical parameters were determined, namely the diameter of the sample, length of the sample, force at 10% of strain, force in the first maximum of the force &ndash; strain curve, strain in the first maximum of the force &ndash; strain curve, modulus of elasticity, force in the inflex point of the force &ndash; time and force &ndash; strain curves and strain and stress in the inflex point of the force &ndash; time and force &ndash; strain curves. Significant correlations of the mechanical parameters were observed between the inflex point and the first maximum point of the loading curves. There were find out, the compression force, stress and strain in the inflex point significantly correlate with the force, stress and strain in the first maximum.


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


Author(s):  
Riikka E. Taskinen ◽  
Sari Hantunen ◽  
Tomi-Pekka Tuomainen ◽  
Jyrki K. Virtanen

Abstract Background/objectives Epidemiological studies suggest that whole grain intake has inverse associations with low-grade inflammation, but findings regarding refined grains are inconclusive. Our objective was to investigate whether consumption of whole or refined grains is associated with serum high sensitivity CRP (hs-CRP). Subjects/methods The study included 756 generally healthy men and women aged 53–73 years from the Kuopio Ischaemic Heart Disease Risk Factory Study, examined in 1999–2001. Dietary intakes were assessed using 4-day food records. ANCOVA and linear regression were used for analyses. Results The mean intake of whole and refined grains was 136 g/day (SD 80) and 84 g/day (SD 46), respectively. Higher whole grain intake was associated with lower hs-CRP concentration and higher refined grain intake with higher concentration after adjustment for lifestyle and dietary factors. Each 50 g/d higher whole grain intake was associated with 0.12 mg/L (95% Cl 0.02–0.21 mg/L) lower hs-CRP concentration and each 50 g/d higher refined grain intake with 0.23 mg/L (95% Cl 0.08–0.38) higher concentration. Adjustment for fibre from grains attenuated the associations especially with whole grains. There were no statistically significant interactions according to gender or BMI (P for interactions >0.065). Conclusions The results of this study suggest that higher intake of whole grains is associated with lower concentrations of hs-CRP and higher intake of refined grains is associated with higher concentrations. However, especially the association with whole grain intake was attenuated after adjusting for fibre intake from grains, suggesting that cereal fibre may partly explain the association.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1199
Author(s):  
Reinhard Puntigam ◽  
Julia Slama ◽  
Daniel Brugger ◽  
Karin Leitner ◽  
Karl Schedle ◽  
...  

This study investigated the effects of sorghum ensiled as whole grains with different dry matter concentrations on the apparent total tract digestibility (ATTD) of energy, crude nutrients and minerals in growing pigs. Whole grain sorghum batches with varying dry matter (DM) concentrations of 701 (S1), 738 (S2) and 809 g kg−1 (S3) due to different dates of harvest from the same arable plot, were stored in air-tight kegs (6 L) for 6 months to ensure complete fermentation. Subsequently, 9 crossbred barrows (34.6 ± 1.8 kg; (Duroc x Landrace) × Piétrain)) were used in a 3 × 3 Latin square feeding experiment. Diets were based on the respective sorghum grain silage and were supplemented with additional amino acids, minerals and vitamins to meet or exceed published feeding recommendations for growing pigs. The ATTD of gross energy, dry matter, organic matter, nitrogen-free extracts, and crude ash were higher in S1 compared to S3 treatments (p ≤ 0.05), while S2 was intermediate. Pigs fed S1 showed significantly higher ATTD of phosphorus (P) compared to all other groups while ATTD of calcium was unaffected irrespective of the feeding regime. In conclusion, growing pigs used whole grain sorghum fermented with a DM concentration of 701 g kg−1 (S1) most efficiently. In particular, the addition of inorganic P could have been reduced by 0.39 g kg−1 DM when using this silage compared to the variant with the highest DM value (809 g kg−1).


2021 ◽  
Vol 11 (7) ◽  
pp. 354
Author(s):  
Waleed Ahmed ◽  
Essam Zaneldin ◽  
Amged Al Hassan

With the rapid growth in the manufacturing industry and increased urbanization, higher amounts of composite material waste are being produced, causing severe threats to the environment. These environmental concerns, coupled with the fact that undergraduate students typically have minimal experience in research, have initiated the need at the UAE University to promote research among undergraduate students, leading to the development of a summer undergraduate research program. In this study, a recycling methodology is presented to test lab-fabricated Carbon-Fiber-Reinforced Polymer (CFRP) for potential applications in industrial composite waste. The work was conducted by two groups of undergraduate students at the UAE University. The methodology involved the chemical dissolution of the composite waste, followed by compression molding and adequate heat treatment for rapid curing of CFRP. Subsequently, the CFRP samples were divided into three groups based on their geometrical distinctions. The mechanical properties (i.e., modulus of elasticity and compressive strength) were determined through material testing, and the results were then compared with steel for prompt reference. The results revealed that the values of mechanical properties range from 2 to 4.3 GPa for the modulus of elasticity and from 203.7 to 301.5 MPa for the compressive strength. These values are considered competitive and optimal, and as such, carbon fiber waste can be used as an alternate material for various structural applications. The inconsistencies in the values are due to discrepancies in the procedure as a result of the lack of specialized equipment for handling CFRP waste material. The study concluded that the properties of CFRP composite prepreg scrap tend to be reusable instead of disposable. Despite the meager experimental discrepancies, test values and mechanical properties indicate that CFRP composite can be successfully used as a material for nonstructural applications.


2020 ◽  
Vol 12 (8) ◽  
pp. 3154 ◽  
Author(s):  
Hedelvan Emerson Fardin ◽  
Adriana Goulart dos Santos

This research aimed to investigate the mechanical and physical properties of Roller Compacted Concrete (RCC) used with Recycled Concrete Aggregate (RCA) as a replacement for natural coarse aggregate. The maximum dry density method was adopted to prepare RCC mixtures with 200 kg/m³ of cement content and coarse natural aggregates in the concrete mixture. Four RCC mixtures were produced from different RCA incorporation ratios (0%, 5%, 15%, and 30%). The compaction test, compressive strength, splitting tensile strength, flexural tensile strength, and modulus of elasticity, porosity, density, and water absorption tests were performed to analyze the mechanical and physical properties of the mixtures. One-way Analysis of Variance (ANOVA) was used to identify the influences of RCA on RCC’s mechanical properties. As RCA increased in mixtures, some mechanical properties were observed to decrease, such as modulus of elasticity, but the same was not observed in the splitting tensile strength. All RCCs displayed compressive strength greater than 15.0 MPa at 28 days, splitting tensile strength above 1.9 MPa, flexural tensile strength above 2.9 MPa, and modulus of elasticity above 19.0 GPa. According to Brazilian standards, the RCA added to RCC could be used for base layers.


2010 ◽  
Vol 24-25 ◽  
pp. 103-108 ◽  
Author(s):  
Jeremie Viguié ◽  
P.J.J. Dumont ◽  
P. Vacher ◽  
Laurent Orgéas ◽  
I. Desloges ◽  
...  

Corrugated boards with small flutes appear as good alternatives to replace packaging folding boards or plastic materials due their small thickness, possibility of easy recycling and biodegradability. Boxes made up of these materials have to withstand significant compressive loading conditions during transport and storage. In order to evaluate their structural performance, the box compression test is the most currently performed experiment. It consists in compressing an empty container between two parallel plates at constant velocity. Usually it is observed that buckling phenomena are localized in the box panels, which bulge out during compression [1]. At the maximum recorded compression force, the deformation localises around the box corners where creases nucleate and propagate. This maximum force is defined as the quasi-static compression strength of the box. The prediction of such strength is the main topic of interest of past and current research works. For example, the box compression behaviour of boxes was studied by Mc Kee et al. [2] and Urbanik [3], who defined semi-empirical formula to predict the box compression strength, as well as by Beldie et al. [4] and Biancolini et al. [5] by finite element simulations. But comparisons of these models with experimental results remain rather scarce and limited.


Sign in / Sign up

Export Citation Format

Share Document