scholarly journals Impact of crop stand, Rhizobium inoculation, and foliar fertilization on pea root parameters

2020 ◽  
Vol 71 (2) ◽  
pp. 77-85
Author(s):  
Agnieszka Klimek-Kopyra ◽  
Reinhard W. Neugschwandtner ◽  
Tomasz Gląb ◽  
Andrzej Oleksy ◽  
Tadeusz Zając

SummaryEcological intensification of crop production involves the use of intercrops and the rational use of inoculation and fertilization in case of intercrops including legume species. The root system plays an important role in the productivity of crops. Therefore, effects of the inoculation treatments (Nitragina) or foliar fertilization (Photrel) or a combination of both were assessed on root parameters of pea grown as pure stand or intercrops with linseed or wheat in a 3-year experiment in Poland. Crop stand composition influenced the root parameters of pea with a higher root length density (RLD) in the root fractions of 0.1–1 mm of pea in pea/linseed intercrops than in the pure stand, a higher mean root diameter (MRD) in pure pea and intercrops of pea with linseed than with wheat, and also a tendency of a higher root dry matter (RDM) in pure pea and pea/linseed than in pea/wheat in 2 out of the 3 years. RLD was higher with Photrel than with Nitragina in root fractions of 0.1–0.5 mm. Treatments did not affect the MRD, but a combination of Nitragina + Photrel increased the RDM in 1 year. Intercropping of pea with linseed and the application of a foliar fertilizer might be a strategy to improve pea root characteristics.

2018 ◽  
Vol 45 (2) ◽  
pp. 75-81
Author(s):  
S.S. Sidhu ◽  
S. George ◽  
D.L. Rowland ◽  
W. Faircloth ◽  
J.J. Marois ◽  
...  

ABSTRACT The critical aspect of production agriculture in the southeastern US with increasing associated costs is to improve economic and agronomic sustainability. A four yr sod-based rotation system consisting of two yr of bahiagrass (Paspalum notatum Flueggé) (grazed or non-grazed) followed by a yr of peanut (Arachis hypogaea L.) and a yr of cotton (Gossypium hirsutum L.), each with winter cover crop (grazed or non-grazed) was established in Marianna, FL. The effect of grazing on root parameters (length, volume, surface area, and diameter) of peanut was observed using a mini-rhizotron. There were differences in several root parameters between grazed and non-grazed plots including: peanut root length (307 mm in grazed vs 167 mm in non-grazed), volume (50 mm3 in grazed vs. 23 mm3 in non-grazed), surface area (399 mm2 in grazed vs. 197 mm2 in non-grazed), and diameter (2.4 mm in grazed vs. 1.7 mm in non-grazed). Roots at the 45-60 cm and 60-75 cm depths had significantly greater length in the grazed than the non-grazed plots. Likewise, surface area was significantly greater in the grazed plots at the 30-45 cm, 45-60 cm and 60-75 cm depths. Grazed plots at the 40-65 cm depths showed significant increase in root diameter. No significant difference in peanut yield was observed for the grazed or non-grazed treatments. A more developed root system associated with cattle grazing in the sod-based rotation system may enable peanuts to be more resilient in adverse environmental conditions such as drought stress, enhance nutrient cycling without affecting yield, thereby improving long-term sustainability.


2021 ◽  
Vol 23 (3) ◽  
pp. 257-264
Author(s):  
SHRUTHI REDDY L ◽  
GOPALA KRISHNA REDDY A ◽  
VANAJA. M ◽  
MARUTHI. V. ◽  
VANAJA LATHA. K.

An experiment was laid out to study the impact of eCO2 (550ppm), eT (+3ºC) and their interaction (eCO2+eT) on rooting behaviour of cuttings of three grape varieties- Thompson Seedless, Bangalore Blue, and Dogridge in FATE and OTC facilities. Observations were recorded at 50 and 80 days after planting (DAP) and root growth data was recorded and analysed using WinRHIZO root scanner and its software. Analysis revealed that, among the selected grape varieties, Thompson Seedless cuttings has shown highest number of roots, root volume and dry biomass under eCO2 and eCO2+ eT conditions, while total root length and root length density were highest with Bangalore Blue. Under eT condition, Bangalore Blue showed highest number of roots, total root length and root length density, while root volume and dry biomass was highest with Thompson Seedless. The per se values of root parameters under all conditions and their response to eCO2 was lowest with Dogridge. Though eT condition reduced all the root parameters, their performance improved under eCO2+ eT indicating the presence of higher concentration of CO2 reduced the ill effects of high temperature. Overall, eCO2 and eCO2+eT conditions improved root parameters of grape varieties, while eT reduced them as compared to their performance under ambient condition and varietal variation is significant.


Author(s):  
Beza Shewangizaw Woldearegay ◽  
Anteneh Argaw ◽  
Tesfaye Feyisa ◽  
Birhan Abdulkadir ◽  
Endalkachew Wold-Meskel

In sub-Saharan Africa, multiple plant nutrients deficiency besides nitrogen (N) and phosphorus (P) is a major growth-limiting factor for crop production. As a result, some soils become non-responsive for Rhizobium inoculation besides P application. Based on the soil test result, the soil of Experimental sites had low organic matter (OM), nitrogen (N), phosphorus (P), sulphur (S) and zinc (Zn)[xy1]. Hence, an experiment was carried out on-farm at Gondar Zuria woreda in Tsion and Denzaz Kebeles to evaluate the effect of Rhizobium inoculation, S and Zn application on yield, nodulation, N and P uptake of chickpea. The experiment included twelve treatments developed via factorial combination of two level of inoculation (Rhizobium inoculated, un-inoculated), three level of S (0, 15, 30 kg Sulphur ha-1) and two levels of Zn (0, 1.5 kg Zinc ha-1). The treatment was laid out in randomized complete block design with three replications. Results showed that the highest mean nodule number (15.3) and nodule volume (1.3 ml plant-1) over locations were obtained with Rhizobium inoculation integrated with 15 kg S and 1.5 kg Zn ha-1 which resulted in 37.8% and 116.7% increment over the control check, respectively. It was also observed that combined application of Rhizobium and 30 kg S ha-1 caused the highest (6.7) mean nodulation rating and seed yield (1775.5 kg ha-1) over locations which resulted in 86.1% and 28 % increase over the control check, respectively. Moreover, this treatment improved P use efficiency of chickpea. On the bases of observed result, it can be concluded that the response of chickpea to Rhizobium and P application can be improved by S application and Rhizobium inoculation with application of 30 kg S ha-1 with recommended rate of P and starter N is recommended for chickpea production at the experimental locations in Gonder Zuria Woreda.


2013 ◽  
Vol 40 (4) ◽  
pp. 379 ◽  
Author(s):  
Yi Zhou ◽  
Christopher J. Lambrides ◽  
Matthew B. Roche ◽  
Alan Duff ◽  
Shu Fukai

The objective of this study was to investigate patterns of soil water extraction and drought resistance among genotypes of bermudagrass (Cynodon spp.) a perennial C4 grass. Four wild Australian ecotypes (1–1, 25a1, 40–1, and 81–1) and four cultivars (CT2, Grand Prix, Legend, and Wintergreen) were examined in field experiments with rainfall excluded to monitor soil water extraction at 30–190 cm depths. In the study we defined drought resistance as the ability to maintain green canopy cover under drought. The most drought resistant genotypes (40–1 and 25a1) maintained more green cover (55–85% vs 5–10%) during water deficit and extracted more soil water (120–160 mm vs 77–107 mm) than drought sensitive genotypes, especially at depths from 50 to 110 cm, though all genotypes extracted water to 190 cm. The maintenance of green cover and higher soil water extraction were associated with higher stomatal conductance, photosynthetic rate and relative water content. For all genotypes, the pattern of water use as a percentage of total water use was similar across depth and time We propose the observed genetic variation was related to different root characteristics (root length density, hydraulic conductivity, root activity) although shoot sensitivity to drying soil cannot be ruled out.


2020 ◽  
Author(s):  
Jhonathan Ephrath ◽  
Alon Ben-Gal ◽  
Amnon Bustan ◽  
Lina Zhao

<p>Salinity affects plant growth due to both osmotic and ionic stress. The root system is essential in defense mechanisms against salinity, particularly involving salt ion avoidance or exclusion. Jojoba (<em>Simmondsia chinensis</em>) displays significant resistance to salinity. In the present study, Jojoba was planted in 60-L plastic buckets containing perlite growth medium and were provided with eight distinct salinity levels using two operating tanks of final irrigation solutions. Response of Jojoba to salinity was measured in above ground parameters and in roots using minirhizotron access tubes and imaging analysis. Leaf phosphorous and potassium concentrations decreased with increasing salinity level while leaf manganese, calcium, sodium and chloride concentrations increased with irrigation salinity level. Jojoba plants were found to have high level of storage of salt minerals in leaves but without effects on photosynthesis or transpiration. Roots exhibited different distribution patterns under different salinity treatments. Root length density increased with increased salinity at each depth. Root number and root length increased over time. During spring, the plant growth was faster than winter. Root diameter decreased over time due to new root development. Time had a more significant effect on root length density than irrigation water salinity or soil depth. Root number and root length were not significantly affected by the salt treatments.</p>


1991 ◽  
Vol 69 (3) ◽  
pp. 671-676 ◽  
Author(s):  
A. Manjunath ◽  
M. Habte

Greenhouse and growth chamber investigations were undertaken using selected Leucaena and Sesbania species to determine the extent to which root morphological characteristics and rhizosphere acid production could explain differences in mycorrhizal dependency of host plants. Compared with the moderately to very highly mycorrhizal-dependent Leucaena species, the marginally to moderately dependent Sesbania species were characterized by higher root mass, higher root density, higher root surface area, higher root length, smaller root diameter, higher percentage of root hair incidence, higher shoot to root ratio, and higher total P uptake. The two groups of species were not consistently different from each other with respect to mycorrhizal colonization level, root hair diameter, root hair length, P uptake per unit root surface area, and acid production in agar media. A stepwise regression model in which mycorrhizal dependency (MD) was used as the dependent variable and root characteristics as independent variables suggested that root mass, root hair length, root diameter, root density, and root hair incidence were important determinants of MD, with root mass accounting for 65.5% of the variability. The results suggest that differences in the mycorrhizal dependency of host species can be largely predicted from root characteristics data. Key words: Brassica, Leucaena, Sesbania, P uptake, root hair, root mass.


2008 ◽  
pp. 127-136
Author(s):  
Diána Ungai ◽  
Zoltan Győri

The yield and quality of the sugar beet are mainly determined by level crop production system; therefore the effects of foliar fertilization were studied. Our field trials were carried out in 2005  and 2006 in Hajdúböszörmény, at two experimental sites. In our trials the effects of Biomit Plussz, Fitohorm and Kelcare Cu (having high Cu content) as foliar fertilizers, as well as a fungicide with high sulphur content, Cosavet DF, were studied andcompared. Effects of treatments were studied in four replicates. We took root samples at 4 week intervals, starting in August. The quality of root (sucrose, potassium, sodium and alfa-amino N content) was determined from filtrated beet broth, by an automatic beet laboratory system, called VENEMA. Leaf samples were taken three times in the growing season, element composition was measured by ICP-OES.We found that the crop and the sugar yield were significantly influenced by the foliar treatments both of the two years.


Author(s):  
Igor N. de Castro ◽  
Silvânio R. dos Santos ◽  
Marcelo R. dos Santos ◽  
Polyanna M. de Oliveira ◽  
Ignacio Aspiazú ◽  
...  

ABSTRACT Knowledge of the cactus pear root distribution system can improve management of the plant by defining the areas of soil best suited to fertilizer application and the installation of soil moisture sensors under irrigation. Thus, the aim of the present study was to assess the root distribution of cactus pear genotypes under different water replacement levels. To that end, a field experiment was conducted in a randomized block design, using genetic material from two cactus pear genotypes (Opuntia fícus-indica Mill. and Nopalea cochenillifera Salm-Dyck) and six water replacement levels based on reference evapotranspiration - ET0 (T1, no irrigation; T2, 15%; T3, 30%; T4, 45%; T5, 60% and T6, 75% of ET0), arranged in split-plot, with irrigation treatments allocated to the plots and the genetic material to the sub-plots, and three replicates. The roots of the cultivars were collected for analysis of root length density (RLD) 390 days after planting. The RDL of very fine roots declines as depth and distance from the plant base increases and total, fine, small and medium RDL rise at higher water replacement levels; 75% of ET0 near the plant base increases RDL; all the root diameter classes are concentrated at a distance of 0-0.20 m from the plant base and depth of 0.10 to 0.25 m; the RDL percentage is higher for the Gigante genotype and Miuda exhibits better root distribution.


Sign in / Sign up

Export Citation Format

Share Document