scholarly journals Analysis of Thermal Comfort in a Single-Family House in Poland

2020 ◽  
Vol 16 (2) ◽  
pp. 396-404
Author(s):  
Natalia Krawczyk ◽  
Sylwia Surmańska

AbstractThe article presents test research on thermal sensations, thermal preferences, as well as general thermal sensations in a single-family building. Graphs were drawn to determine the frequency of answers chosen by the respondents and the relationship between temperature and thermal sensations, as well as the influence of relative humidity on thermal sensations. A comparison was also made between the average thermal sensation vote and the PMV index, which determines the ‘predicted mean vote’ - estimated by the Fanger model. The aim of the study was to compare the actual feelings of the respondents with standard guidelines. As a result of this analysis it was found that the thermal sensations of the respondents do not comply with the adopted model included in the standard.

2021 ◽  
Vol 25 (6 Part A) ◽  
pp. 4225-4231
Author(s):  
Xiaodan Huang ◽  
Qingyuan Zhang ◽  
Xiaoli Ma

In order to improve the design effect of venues, this paper establishes the evaluation model of indoor thermal comfort for the humid and hot subtropical areas, which provides theoretical reference for venue design. This paper investigates the thermal sensation of basketball players by questionnaire, analyzes the relation-ship between thermal sensation vote and standard effective temperature, predicted mean vote, and wet bulb globe temperature, and develops an index called predicted thermal sensation by using the least square method. The relationship between outdoor air temperature and indoor working temperature under neutral conditions is obtained by measuring data. The results show that the correlation between thermal sensation vote and air temperature is the strongest, R2 is 0.753, while the relationship between thermal sensation vote and air speed is weak, R2 is 0.012. Thermal sensation vote and set, predicted mean vote and wet bulb globe temperature are not suitable for athletes in the field environment.


2021 ◽  
Vol 896 (1) ◽  
pp. 012074
Author(s):  
W Budiawan ◽  
K Tsuzuki ◽  
H Sakakibara

Abstract The comfort temperature and sleep quality of Indonesian residing in Japan during summer might be different from Japanese. As an extended previous research, this study aimed to compare the thermal comfort and sleep quality between Japanese and Indonesian students. Male Indonesian and Japanese students aged 20-35 years participated in this study. The participants completed a survey regarding thermal sensation before sleep. During sleep, actigraphy was used to monitor sleep. Additionally, the temperature and relative humidity of the participants’ bedrooms were recorded. The findings of this study indicated that Indonesian students’ bedroom temperature and relative humidity were not significantly different from those of Japanese students during the summer. Most of Indonesian students preferred neutral, like the Japanese students. According to a thermal comfort survey, Indonesians had the same sensation as Japanese (slightly comfortable). However, the Griffiths method revealed that the mean comfort temperature of Indonesian was higher than those of Japanese students. We also discovered that Indonesian students had shorter duration on bed and sleep minute than Japanese students. Furthermore, the sleep rate of Indonesian students was comparable to that of Japanese students. In conclusion, Indonesian students as tropical native became capable of adjusting to the hot and humid conditions in temperate climate, Japan.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1324 ◽  
Author(s):  
Xuan Ma ◽  
Hiroatsu Fukuda ◽  
Dian Zhou ◽  
Mengying Wang

The growth of the scale of cities intensifies urban heat island (UHI) by obstructing the wind and building more radiation at pedestrian level, thus leading to an energy consumption. Commercial pedestrianized-zones cannot only become symbols of cities but also an important factor increasing local economic income. This study conducts on-site measurement and numerical simulation to evaluate the cooling energy efficiency of different parameters (building, vegetation, pavement material) in Fo Shan city, which locates in hot-summer and warm-winter climate region of China. Also, calculations are done to evaluate the index physiological equivalent temperature (PET) for understanding thermal sensation at a pedestrian level (1.5 m). To evaluate different impacts of this zone renewal on the environment and choose the most energy-saving method, it is easy for us to utilize the linear regression for understanding the relationship between coverage ratio of trees (TCR) and thermal comfort in canyon space, which shows that ∆PET = 0.1703 × TCR + 0.2444 with a most important R2 value of 0.9836, for TCR increases from 12.5% to 22%. In open space, also increasing coverage ratio of trees (TCR) can effectively improve humans’ thermal comfort, which shows that ∆PET = 0.2644 × TCR + 0.3955 with a most important R2 value of 0.8892.


Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 551
Author(s):  
Zoubayre El Akili ◽  
Youcef Bouzidi ◽  
Abdelatif Merabtine ◽  
Guillaume Polidori ◽  
Amal Chkeir

The thermal comfort requirements of disabled people in healthcare buildings are an important research topic that concerns a specific population with medical conditions impacted by the indoor environment. This paper experimentally investigated adaptive thermal comfort in buildings belonging to the Association of Parents of Disabled Children, located in the city of Troyes, France, during the winter season. Thermal comfort was evaluated using subjective measurements and objective physical parameters. The thermal sensations of respondents were determined by questionnaires adapted to their disability. Indoor environmental parameters such as relative humidity, mean radiant temperature, air temperature, and air velocity were measured using a thermal microclimate station during winter in February and March 2020. The main results indicated a strong correlation between operative temperature, predicted mean vote, and adaptive predicted mean vote, with the adaptive temperature estimated at around 21.65 °C. These findings highlighted the need to propose an adaptive thermal comfort strategy. Thus, a new adaptive model of the predicted mean vote was proposed and discussed, with a focus on the relationship between patient sensations and the thermal environment.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8159
Author(s):  
Edyta Dudkiewicz ◽  
Marta Laska ◽  
Natalia Fidorów-Kaprawy

Research towards understanding the relationship between maintaining thermal comfort and energy efficiency in the public utility buildings was undertaken among 323 1st year students during class hours. Questionnaires surveys and measurements of indoor conditions were performed. The article identified students’ sensations and perceptions concerning indoor conditions. Temperature, relative humidity, air velocity and CO2 concentration measured to assess room conditions showed that the auditorium had almost comfortable conditions according to the literature guidelines. The indices used to assess students’ perceptions were: Thermal Sensation Vote (TSV), Thermal Preference Vote (TPV), Air Freshness Sensation Vote (AfSV), Air Movement Preference Vote (AmPV), and Relative Humidity Preference Vote (RHPV). The interpretation of these indicators showed that while the students’ requests for temperature changes and increased air movement are adequate for the air conditions in the room, the evaluation of stuffiness and requests for changes in humidity levels are surprising. Striving uncritically to meet the desired room parameters, according to the users votes, can lead to deterioration of the air and not only the increase in energy consumption but even waste it. Better understanding of users’ preferences and behaviour and further application of this knowledge indirectly aim at increasing energy efficiency in buildings.


2020 ◽  
Vol 165 ◽  
pp. 01026
Author(s):  
Jinwei Li ◽  
Lilin Zhao ◽  
Zheyao Peng ◽  
Zijian Wang ◽  
Taotao Shui

In order to study the outdoor thermal comfort during the transition season in Hefei, a university in Hefei adopted a combination of field environmental measurements and questionnaires to study the changes in thermal sensation and thermal comfort of outdoor people before and after the transition season. The rankings of the effects of temperature, wind speed, humidity, and solar radiation on human thermal comfort were obtained through surveys, and the proportion of each parameter’s influence on human thermal comfort was analyzed. The relationship between thermal sensation and thermal comfort was analyzed, and the application was established through regression analysis Prediction model of thermal sensation in autumn and winter outdoor environment in Hefei area.


2020 ◽  
Vol 172 ◽  
pp. 06001
Author(s):  
Håkon Solberg ◽  
Kari Thunshelle ◽  
Peter Schild

An increasing part of modern building's energy demand is due to cooling. An ongoing research project investigates the possibility to reduce the energy consumption from cooling by utilizing an individually controlled active ventilation diffuser mounted in the ceiling. This study looks at thermal sensation and thermal comfort for 21 test persons exposed to an innovative user controlled active ventilation valve, in a steady and thermally uniform climate chamber. Furthermore, the relationship between biometric data from the test persons skin temperature and sweat, and the test persons thermal sensation scores has been investigated. Each test person was exposed to three different room temperatures in the climate chamber, 24°C, 26°C and 28°C respectively, to simulate typical hot summer conditions in an office in Norway. At a room temperature of 26°C it was possible to achieve acceptable thermal comfort for most test persons with this solution, but higher air velocity than 0.75 m/s around the test persons bodies at room temperatures of 28°C is required to ensure satisfactory thermal comfort.


Author(s):  
Sobhy Issam ◽  
Brakez Abderrahim ◽  
Brahim Benhamou

Abstract This paper aims at identifying the impact of three retrofit scenarios of a typical single family house on its energy performance and its indoor thermal comfort in several climates. Two of these scenarios are based on the Moroccan Thermal Regulation in Constructions (RTCM) while the third is the one proposed in this study. The climates, which range from group B to group C of the Köppen climate classification. The results show that the proposed renovation scenario allows reducing the heating load by 19-42% and the cooling load by 29-60% depending on the climate. Furthermore, the RTCM retrofit scenario leads to summer overheating in all climates. One of the main reason of this overheating is the insulation of the slab-on-grade floor as this insulation increases the annual heating/cooling energy needs of the house by 6%-10%. Moreover, the cavity wall technique was found to be the best option for external walls, instead of using high thermal insulting material, in the hot climates. The analysis of the energy performance, the thermal comfort indices and the payback periods for each retrofit scenario shows that the proposed scenario presents the best thermal performance, except for the Cold climate where the RTCM scenario is the most favorable.


2016 ◽  
Vol 819 ◽  
pp. 207-211 ◽  
Author(s):  
Nur Atikah Shaari ◽  
Sheikh Ahmad Zaki ◽  
Mohamed Sukri Mat Ali ◽  
Azli Abd Razak

A field study was done on the thermal comfort of seven air-conditioned university classrooms in the hot and humid climate of Malaysia. The aims of this paper are to investigate the perceptions of thermal comfort and the adaptation method of students in air-conditioned classrooms. In total, 189 respondents from the classrooms completed the questionnaire. A comparison was made between the Predicted Mean Vote (PMV) and the Thermal Sensation Vote (TSV) and it was found that the TSV values tended to be more sensitive than the PMV values. A variety of adaptation methods of the occupants in the classrooms are also presented. It was found that most of the occupants preferred to change the air-conditioning thermostat, probably because all the occupants had the opportunity to control the thermostat.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5332
Author(s):  
Krzysztof Grygierek ◽  
Izabela Sarna

Today, there is a great deal of emphasis on reducing energy use in buildings for both economic and environmental reasons. Investors strongly encourage the insulating of buildings. Buildings without cooling systems can lead to a deterioration in thermal comfort, even in transitional climate areas. In this article, the effectiveness of natural ventilation in a passive cooling building is analyzed. Two options are considered: cooling with external air supplied to the building by fans, or by opening windows (automatically or by residents). In both cases, fuzzy controllers for the cooling time and supply airflow control are proposed and optimized. The analysis refers to a typical Polish single-family building. Simulations are made with the use of the EnergyPlus program, and the model is validated based on indoor temperature measurement. The calculations were carried out for different climate data: standard and future (warmed) weather data. Research has shown that cooling with external air can effectively improve thermal comfort with a slight increase in heating demand. However, to be able to reach the potential of such a solution, fans should be used.


Sign in / Sign up

Export Citation Format

Share Document