scholarly journals The Efficiency of Nitrogen Compounds Removal in Wastewater Treatment Plant

2018 ◽  
Vol 28 (3) ◽  
pp. 5-16
Author(s):  
Monika Suchowska-Kisielewicz ◽  
Aleksandra Sieciechowicz ◽  
Zofia Sadecka

Abstract In sewage treatment plants for removing nitrogen compounds are used biological processes of nitrification and denitrification. The parameters determining the efficiency of biological processes of nitrogen removal are organic carbon ratio (BOD5) to total Kjeldahl nitrogen (TKN), temperature and pH. The impact of these parameters on the operation of the sewage treatment plant with an RLM of 45,000 based on operational data from the period 2011-2013 has been assessed. The efficiency of removing nitrogen compounds from sewage in the analysed treatment plant depended on the temperature of sewage and the quotient BOD5/TKN. Even at the optimal ranges of BOD5/TKN ratio temperature at 10°C nitrogen concentration in the treated wastewater was about 3 times higher than the limit value, and the removal efficiency of nitrogen varied between about 30 to 60%.

2017 ◽  
Vol 1 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Athar Hussain ◽  
Manjeeta Priyadarshi ◽  
Saif Said ◽  
Suraj Negi

Most of the industrial sewage effluents used for irrigation contains heavy metals which cause toxicity to crop plants as the soils are able to accumulate heavy metal for many years. The vegetables grown for the present study were irrigated with treated wastewater brought from a nearby full-scale sewage treatment plant at different compositions along with tap water as a control. The concentration levels of the Cd, Co, Cu, Mn and Zn in the soil were found to below the toxic limits as prescribed in literature. Daily Intake Metals (DIM) values suggest that the consumption of plants grown in treated wastewater and tap water is nearly free of risks, as the dietary intake limits of Cu, Fe, Zn and Mn. The Enrichment Factor for the treated wastewater irrigated soil was found in order Zn> Ni> Pb> Cr> Cu> Co> Mn> Cd. Thus, treated wastewater can be effectively used for irrigation. This will have twofold significant environmental advantages: (1) helpful to reduce the groundwater usage for irrigation and (2) helpful to reduce the stress on surface water resources.


2018 ◽  
Vol 45 ◽  
pp. 00036
Author(s):  
Zbigniew Kowalewski

The process of designing and exploiting municipal sewage treatment plants has become much simpler and more efficient thanks to mathematical modeling. The ASM model family is able to simulate the operation of existing or designed objects in a satisfactory manner. The basic problem in Poland is the insufficient amount of data for simulations coming from plant monitoring. It is provided to create unstable model results with difficulties in calibration and validation. The aim of this article is to confirm how the amount of data and its completeness will affect the quality of the simulation performed in the ASM model. The study object is a sewage treatment plant located in Chicago in the USA. It is a sewage treatment plant operating with activated sludge technology, with regular monitoring of the quality of raw and treated wastewater. For modeling, a variant of the ASM model built into the BioWin 5.2 software was used.


2014 ◽  
Vol 69 (11) ◽  
pp. 2372-2380 ◽  
Author(s):  
Mats Ek ◽  
Christian Baresel ◽  
Jörgen Magnér ◽  
Rune Bergström ◽  
Mila Harding

Pharmaceutical residues, which pass naturally through the human body into sewage, are in many cases virtually unaffected by conventional wastewater treatment. Accumulated in the environment, however, they can significantly impact aquatic life. The present study indicates that many pharmaceutical residues found in wastewater can be removed with activated carbon in a cost-efficient system that delivers higher resource utilisation and security than other carbon systems. The experiment revealed a substantial separation of the analysed compounds, notwithstanding their relatively high solubility in water and dissimilar chemical structures. This implies that beds of activated carbon may be a competitive alternative to treatment with ozone. The effluent water used for the tests, performed over 20 months, originated from Stockholm's largest sewage treatment plant. Passing through a number of different filters with activated carbon removed 90–98% of the pharmaceutical residues from the water. This paper describes pilot-scale tests performed by IVL and the implications for an actual treatment plant that has to treat up to several thousand litres of wastewater per second. In addition, the advantages, disadvantages and costs of the method are discussed. This includes, for example, the clogging of carbon filters and the associated hydraulic capacity limits of the activated carbon.


2018 ◽  
Vol 30 ◽  
pp. 02008 ◽  
Author(s):  
Volodimir Pliashechnyk ◽  
Yaroslav Danko ◽  
Grzegorz Łagód ◽  
Jakub Drewnowski ◽  
Tatiana Kuzmina ◽  
...  

This paper presents the results of studies on the Uzh River (Ukraine, Zakarpattia Oblast) near the effluent point of a sewage treatment plant in Uzhgorod. The samples were taken at various sites of the treatment plant along the stages of purification process, as well as in the river, at a number of different points above and below the wastewater discharge. At each of these objects, the temperature and O2 were measured. The structure of ciliate assemblage was analyzed along the stages of the treatment process in the WWTP and in the river before and after the sewage discharge. A total of 26 ciliate taxa were observed and included in the analysis. All the studied stations were considered as a continuum in which populations of protozoa spread freely according to their ecological preferences. The majority of ciliate species were encountered in each of the examined stations, but their quantitative development differed significantly, reflecting their response to the environmental conditions at the stations. The analysis of the qualitative and quantitative distribution of ciliate populations by the stations enabled to group them in respect to the peculiarities of the local conditions. The study showed that the majority of the ciliate species, typical of bioreactors, are equally common at the stations of the Uzh River below wastewater discharges. The ciliate assemblage in the oxygen gradient demonstrated a wide spectrum of ecological tolerance at the species level. These findings confirm that ciliates are very good indicators of the environmental quality, provided that detailed information about their environmental priorities is available.


2017 ◽  
Vol 43 (3) ◽  
pp. 74-81 ◽  
Author(s):  
Bartosz Szeląg ◽  
Lidia Bartkiewicz ◽  
Jan Studziński ◽  
Krzysztof Barbusiński

AbstractThe aim of the study was to evaluate the possibility of applying different methods of data mining to model the inflow of sewage into the municipal sewage treatment plant. Prediction models were elaborated using methods of support vector machines (SVM), random forests (RF), k-nearest neighbour (k-NN) and of Kernel regression (K). Data consisted of the time series of daily rainfalls, water level measurements in the clarified sewage recipient and the wastewater inflow into the Rzeszow city plant. Results indicate that the best models with one input delayed by 1 day were obtained using the k-NN method while the worst with the K method. For the models with two input variables and one explanatory one the smallest errors were obtained if model inputs were sewage inflow and rainfall data delayed by 1 day and the best fit is provided using RF method while the worst with the K method. In the case of models with three inputs and two explanatory variables, the best results were reported for the SVM and the worst for the K method. In the most of the modelling runs the smallest prediction errors are obtained using the SVM method and the biggest ones with the K method. In the case of the simplest model with one input delayed by 1 day the best results are provided using k-NN method and by the models with two inputs in two modelling runs the RF method appeared as the best.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Suchowska-Kisielewicz ◽  
Ireneusz Nowogoński

AbstractDuring heavy precipitation, chemical and biological pollutants from urban and agricultural areas enter the waters from storm overflows as a result of infiltration and inflow, as well as via uncontrolled outflows from water treatment plants. Infiltration and inflow of rainwater into sewers is an especially popular and major worldwide problem. Climate forecasts indicate changes in climatic conditions towards an increase in the intensity and frequency of torrential rainfalls. It may therefore be assumed that the negative impact of rainwater on water quality will increase. This article attempts to address the question of the impact of pollution from wastewater introduced into water during rainy weather to the receiver. The assessment of the impact of rainfalls on a receiver was carried out on the basis of a simulation of pollution loads from sewage introduced into a river by storm overflows based on data from monitoring the amount of rainfall and simulating the operation of storm overflows using Environmental Protection Agency Storm Water Management Model (EPA SWMM). The obtained results were compared with the pollutant loads discharged at the same time from the sewage treatment plant (STP). In addition, the article assesses possible improvement solutions to reduce the negative impact of storm overflows on water.


2020 ◽  
Vol 9 (6) ◽  
pp. 440-446 ◽  
Author(s):  
Said Mohareb ◽  
Abdallah Hadfi ◽  
Ilham Karmal ◽  
Said Ben-Aazza ◽  
M'barek Belattar ◽  
...  

In Agadir city, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant in the city of Agadir in south-west of Morocco. These waters are used in the irrigation of golf turf “Ocean”. The formation of solid deposits in the irrigation systems has decreased their lifetime, and consequently, a loss of load and performance is occurring. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of the beginning of their operation. The wastewater used for the irrigation of the golf was analyzed at various points using physicochemical measurements: in the golf entry, at the tarpaulin and the exit of the sprinklers. The samples of treated wastewater and obtained scale were studied. The characterization of the scale samples formed in the passageways of the treated wastewaters has been performed by X-ray fluorescence spectrometry, X-ray diffraction, thermogravimetric analysis, differential thermal analysis and scanning electron microscopy. The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and in calcium (199 mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO3), silica (SiO2), calcium silicate (Ca2SiO4), hydroxylapatite (Ca10P6O26H2), calcium carbonate-apatite(Ca10 (PO4) 6CO3) and silicate calcium and magnesium (Ca5MgSi3O12).


1992 ◽  
Vol 25 (4-5) ◽  
pp. 59-66 ◽  
Author(s):  
C. Andersson ◽  
M. Tendaj ◽  
M. Rothman

The requirements for purification of the sewage will be more stringent in Sweden. For the three plants in Stockholm - Henriksdal, Bromma and Loudden the proposed limit concentrations for BOD7, total phosphorus and total nitrogen are 10, 0.3 and 15 respectively. A limit value of 0.3 mg/l of phosphorus in the effluent will require a filtration stage. In this paper results are presented from filter tests at Bromma sewage treatment plant. The tests were carried out during almost two years and included operation of different types of sand dual-media downflow filters and an upflow filter. The filters were tested with respect to sludge accumulation capacity, suspended solids removal and phosphorus removal at different operation conditions including chemical precipitation in the filters.


2013 ◽  
Vol 647 ◽  
pp. 430-433
Author(s):  
Fu Guang Gu ◽  
Zhao Bo Chen ◽  
Xiao Yu Wang ◽  
Hong Cheng Wang ◽  
Jin Yang Hao

There is a certain amount of intermediate and other ingredient in pharmaceutical wastewater .These pharmaceutical will have a big effect on microorganism in sewage treatment plant. So this article discussed the study one impact of microbial community structure by the different intermediate concentration of Pharmaceutical waste water .The study shows that Microbial community structure are diversity in the pharmaceutical wastewater treatment plant.With the change of the environment some microbes are reduced or even disappear and some microbes are gradually produce. The microbes which have a big effect by different environment have adapt to 7-ACA, won the resistance and become a part of microbial community in stationary phase.


Sign in / Sign up

Export Citation Format

Share Document