scholarly journals Corrosion Resistance of SiMo- and SiCu-Types of Nodular Cast Iron in NaCl Solution

2020 ◽  
Vol 2 (1) ◽  
pp. 191-198
Author(s):  
Alan Vaško ◽  
Viera Zatkalíková ◽  
Václav Kaňa

AbstractNodular cast irons are used in a wide range of industrial applications, especially in the automotive industry. SiMo-type of nodular cast iron is suitable for high-temperature applications, for example the exhaust manifolds of the combustion engines; SiCu-type of nodular cast iron is used in various components of tribotechnical units. These automotive components often work in a corrosive environment. Therefore, the aim of this paper is to compare the corrosion resistance of two types of the nodular cast irons (SiMo-type and SiCu-type). Corrosion resistance was determined by the exposure immersion test at ambient temperature. Specimens of both types of nodular cast iron were immersed in 3.5 % NaCl solution (to simulate sea water) and gradually removed from the solution after 1, 2, 4 and 8 weeks. Subsequently, the weight loss (g) and the average corrosion rate (g m−2 day−1) were calculated. Experimental results show that nodular cast iron alloyed by Si and Mo has higher corrosion resistance than the nodular cast iron alloyed with Si and Cu. Moreover, the mechanical properties (evaluated by tensile test, impact bending test and hardness test) and fatigue properties of both types of nodular cast iron has been compared in the paper.

2019 ◽  
Vol 1 (1) ◽  
pp. 738-744
Author(s):  
Alan Vaško ◽  
Marek Krynke

AbstractIn recent years, the research of nodular cast iron has been focused on increasing fatigue resistence. In the paper, two types of alloyed nodular cast irons have been investigated – SiMo-nodular cast iron alloyed by 4% of silicon and 1% of molybdenum and SiCu-nodular cast iron alloyed by 4% of silicon and 1.5% of copper. SiMo-nodular cast iron is suitable for high-temperature applications, for example the exhaust manifolds of the combustion engines. SiCu-nodular cast iron is used in various components of tribotechnical units. These components are often loaded by fatigue. The mechanical and fatigue behaviour of both nodular cast iron types has been studied by means of tensile test, impact bending test, hardness test and fatigue tests. Fatigue tests were realised at low frequency cyclic push-pull loading up to 10 million cycles. The relationship between the amplitude of stress and number of cycles to failure was investigated and the fatigue strength was determined. Mechanical and fatigue properties of both nodular cast iron types are correlated with the microstructure of specimens.


2014 ◽  
Vol 635 ◽  
pp. 5-8 ◽  
Author(s):  
Alan Vaško

The contribution deals with comparison of microstructure, mechanical properties and fatigue properties of synthetic nodular cast irons with a different ratio of steel scrap in a charge. Chemical composition of individual melts was regulated alternatively by ferrosilicon (FeSi) and carburizer or metallurgical silicon carbide (SiC). The paper shows positive influence of SiC additive on the microstructure, mechanical properties as well as fatigue properties of nodular cast iron. The additive of metallurgical silicon carbide in analysed specimens increases the content of ferrite in the matrix, decreases the size of graphite and increases the average count of graphitic nodules per unit of area. Consequently, the mechanical and fatigue properties of nodular cast iron are improved.


2017 ◽  
Vol 62 (4) ◽  
pp. 2205-2210 ◽  
Author(s):  
A. Vaško

Abstract Three melts of ferrite-pearlitic nodular cast iron with different charge composition were used for fatigue tests. Wöhler fatigue curves and fatigue strength were obtained, and microstructure and fracture surfaces were investigated. The aim of the paper is to determine the influence of charge composition on microstructure, mechanical and fatigue properties of synthetic nodular cast irons and their micromechanisms of failure. Fatigue tests were realised at low frequency sinusoidal cyclic push-pull loading (stress ratio R = −1) at ambient temperature (T = 20 ±5°C). They were carried out with using the fatigue experimental machine Zwick/Roell Amsler 150HFP 5100 at frequency f ≈ 120 Hz. The results of fatigue tests at low frequency cyclic loading are compared with fatigue properties at high frequency cyclic loading.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 311
Author(s):  
Christian Gebhardt ◽  
Johannes Nellessen ◽  
Andreas Bührig-Polaczek ◽  
Christoph Broeckmann

The fatigue strength of high silicon-alloyed nodular cast iron is influenced by casting defects and graphite precipitates. The literature as well as the findings of this work show that these microstructural constituents can be tailored by controlling silicon microsegregation. In addition, segregations also affect the ferritic matrix microstructure locally. In the present work, silicon segregations in high silicon-alloyed ductile iron are specifically manipulated by small additions of aluminum. It was demonstrated how the aluminum content affects a wide range of microstructural constituents across a variety of length scales. Specimens from alloys with small additions of aluminum were fabricated and tested by rotating bending. Results show that the fatigue strength can be increased compared to a reference alloy with no aluminum. Microstructure analysis as well as fractography were performed concluding that microstructural changes could be attributed to the increased aluminum content, which allows the fatigue properties to be tailored deliberately. However, according to the results of this study, the negative effect of aluminum on castability and graphite morphology limits the maximum content to approximately 0.2 wt.%.


2014 ◽  
Vol 693 ◽  
pp. 382-387 ◽  
Author(s):  
Alan Vaško ◽  
Milan Vaško

The paper deals with comparison of the failure micromechanisms of nodular cast iron at static, impact and fatigue stress. Several specimens of ferrite-pearlitic nodular cast irons with different content of ferrite in a matrix were used for metallographic analysis, mechanical tests and microfractographic analysis. Mechanical properties were found out by static tensile test, impact bending test and fatigue tests. The microfractographic analysis was made with use of scanning electron microscope on fracture surfaces of the specimens fractured by these mechanical tests. Fracture surfaces of analysed specimens are characteristic of mixed mode of fracture. Failure micromechanism of nodular cast irons is dependent on mode of stress.


2014 ◽  
Vol 474 ◽  
pp. 291-296 ◽  
Author(s):  
Milan Vaško ◽  
Alan Vaško

The contribution deals with comparison of microstructure, mechanical properties and fatigue properties of synthetic nodular cast irons with a different ratio of steel scrap in a charge. Chemical composition of individual meltages was regulated alternatively by ferrosilicon (FeSi) and carburizer or metallurgical silicon carbide (SiC). The paper shows that SiC additive positively influences the microstructure, mechanical properties as well as fatigue properties of nodular cast iron, especially in the meltages with higher ratio of steel scrap in the charge. Moreover, production of synthetic nodular cast irons with SiC additive is economically advantageous.


Alloy Digest ◽  
1980 ◽  
Vol 29 (3) ◽  

Abstract AMPCOLOY 570 is a cast copper-nickel-aluminum-cobalt-iron alloy specially developed for applications involving severe stresses and high temperatures, such as glass-making molds and plate-glass rolls. It is significantly superior to cast iron which has been commonly used for glass-making molds. Good foundry techniques will yield high-quality castings of Ampcoloy 570 in a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-392. Producer or source: Ampco Metal Inc..


Alloy Digest ◽  
1970 ◽  
Vol 19 (11) ◽  

Abstract PLATINUM is a soft, ductile, white metal which can be readily worked either hot or cold. It has a wide range of industrial applications because of its excellent corrosion and oxidation resistance and its high melting point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Pt-1. Producer or source: Matthey Bishop Inc..


2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
Basilio Zafrilla ◽  
Gloria Bravo-Barrales ◽  
Julia Esclapez ◽  
...  

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.


2019 ◽  
Vol 16 (31) ◽  
pp. 642-650
Author(s):  
Douglas MARTINAZZI ◽  
Guilherme V. B LEMOS ◽  
Renan M LANDELL ◽  
Diogo T BUZZATTI ◽  
André BRUSIUS ◽  
...  

Nodular cast irons are an excellent alternative in manufacturing process of axels due to their characteristics and good mechanical properties. However, the necessity of joining the axels to the gears and other components, made in carbon steel, is a great challenge. Traditional fusion welding methods applied to dissimilar ferrous materials are not deeply studied. In this context, it is well known that different materials have distinct melting points which can cause difficulty in welding, besides of defects formation from solidification. Therefore, modern joining processes such as Friction Hydro Pillar Processing (FHPP) are a great alternative. In this technology, a consumable rod is rotated against to a base material, generating the heat due to the friction, promoting materials in the plastic state and then producing the weld. Hence, this work presents a preliminary study of FHPP between the FE55006 nodular cast iron and SAE 8620 steel and evaluates the rod geometry influence on microstructure and surface stresses of the welded joints. Two rod geometries were used and two welds were further produced. The results indicated that an increase in the rod contact area promoted a lower surface stress as well as a better welded joint.


Sign in / Sign up

Export Citation Format

Share Document