scholarly journals Analysis of forest fire and climate variability using Geospatial Technology for the State of Telangana, India

2019 ◽  
Vol 7 (1) ◽  
pp. 24-37 ◽  
Author(s):  
Firoz Ahmad ◽  
Laxmi Goparaju

Abstract The dynamic changes in the regimes of forest fires are due to the severity of climate and weather factors. The aim of the study was to examine the trend of forest fires and to evaluate their relationship with climate parameters for the state of Telangana in India. The climate and forest fire data were used and uploaded to the GIS platform in a specified vector grid (spacing: 0.3° x 0.3°). The data were evaluated spatially and statistical methods were applied to examine any relationships. The study revealed that there was a 78% incidence of forest fires in the months of February and March. The overall forest fire hotspot analysis (January to June) of grids revealed that the seven highest forest fire grids retain fire events greater than 600 were found in the north east of Warangal, east of Khammam and south east of Mahbubnagar districts. The forest fire analysis significantly followed the month wise pattern in grid format. Ten grids (in count) showed a fire frequency greater than 240 in the month of March and of these, three grids (in count) were found to be common where the forest fire frequency was highest in the preceding month. Rapid seasonal climate/weather changes were observed which significantly enhanced the forest fire events in the month of February onwards. The solar radiation increased to 159% in the month of March when compared with the preceding month whereas the relative humidity decreased to 47% in the same month. Furthermore, the wind velocity was found to be highest (3.5 meter/sec.) in the month of February and precipitation was found to be lowest (2.9 mm) in the same month. The analysis of Cramer V coefficient (CVC) values for wind velocity, maximum temperature, solar radiation, relative humidity and precipitation with respect to fire incidence were found to be in increasing order and were in the range of 0.280 to 0.715. The CVC value for precipitation was found to be highest and equivalent to 0.715 and showed its strongest association/relationship with fire events. The significant increase in precipitation not only enhances the moisture in the soil but also in the dry fuel load lying on the forest floor which greatly reduces the fuel burning capacity of the forest. The predicted (2050) temperature anomalies data (RCP-6) for the month of February and March also showed a significant increase in temperature over those areas where forest fire events are found to be notably high in the present scenario which will certainly impact adversely on the future forest fire regime. Findings from this study have their own significance because such analyses/relationships have never be examined at the state level, therefore, it can help to fulfill the knowledge gap for the scientific community and the state forest department, and support fire prevention and control activities. There is a need to replicate this study in future by taking more climate variables which will certainly give a better understanding of forest fire events and their relationships with various parameters. The satellite remote sensing data and GIS have a strong potential to analyze various thematic datasets and in the visualization of spatial/temporal paradigms and thus significantly support the policy making framework.

2019 ◽  
Vol 38 (1) ◽  
pp. 49-68 ◽  
Author(s):  
Firoz Ahmad ◽  
Laxmi Goparaju

AbstractClimate change and its severity play an important role in forest fire regime. Analysing the forest fires events becomes a prerequisite for safeguarding the forest from further damage. We have made an assessment of the long-term forest fire events at the district level in India and identified the forest fire hotspot districts. The spatial seasonal (January to June) district wise pattern and forest fire trend were analysed. In the second part of the study area (central part of India), we have evaluated the forest fire events in grid format with respect to the climatic/weather datasets, and the statistical analysis Cramer V coefficient (CVC) was performed to understand its association/relationship with forest fire events.The study revealed that Karbi Anglong and North Cachar Hills districts of Assam of India have the highest forest fire percent among all districts equivalent to 3.4 and 3.2% respectively. Dantewada district of Chhattisgarh and Garhchiroli district of Maharashtra of India occupied 3rd and 4th rank with value 3.1 and 3.0% respectively. The grid-based evaluation (local scale) revealed that most of the fire equivalent of 80% was found in the month of March and April. Forest fire frequency of the month of April is spread over 88 % of the grids over the study area. The 11 years average seasonal month-wise (February to June) maximum temperature, wind velocity, relative humidity, and solar radiation were found in the range of (25.9 to 40.6), (1.69 to 2.7), (0.301 to 0.736) and (14.21 to 22.98) respectively. The percentage increase (in the month of March) of maximum temperature, wind velocity, and solar radiation were 36, 39 and 62% respectively, when compared with the preceding month; whereas, a 60% decrease to relative humidity that was observed in the same month is usually the major cause of forest fire events in the month of March onwards.The evaluation of Cramer V coefficient (CVC) values of rainfall, relative humidity, potential evapotranspiration, maximum temperature, wind velocity, and solar radiation were in decreasing order and in the range of 0.778 to 0.293. The highest value of rainfall (0.778) showed its strongest association with the forest fire events. In the month of June, these areas receive adequate rainfall, which leads to an increase in the soil moisture and a reduction in forest fuel burning capacity by absorbing the moisture and it is a strong reason for less forest fire events during this month. Geospatial technology provides an opportunity to evaluate large datasets over various spatial and temporal scales and help in decision making/formulating various policies.


2018 ◽  
Vol 7 (2) ◽  
pp. 229-246 ◽  
Author(s):  
Firoz Ahmad ◽  
Laxmi Goparaju

Abstract We have examined the climate and forest fire data using Remote Sensing and GIS in the state of Himachal Pradesh and Uttarakhand states of India. The significant high forest fire events were observed in district of Pauri Garhwal (22.4%) followed by Naini Tal (16.4%), Tehri Garhwal (8.5%), Almora (7.7%), Chamoli (5.8%), Dehra Dun (4.6%), Uttarkashi (4.3%), Champawat (4.2%), Haridwar (3.6%), Una (3.4%), Bageshwar (3.1%), Udham Singh Nagar (2.9%), Sirmaur (2.7%), Solan (2.3%), Kangra (2.1%), Pithoragarh (1.7%) and Shimla (1.2%). The LULC forest category “Deciduous Broadleaf Forest” occupied 17.2% of total forest area and retain significantly high forest fire percent equivalent to 44.7% of total forest fire events. The study revealed that 79% of forest fire incidence was found in the month of April and May. The fire frequency was found highest in the month of April (among all months) whereas it was spread over the five grids (in the count) where the fire frequencies were greater than 100. The average monthly analysis (from January to June) for maximum temperature (°C), precipitation (mm), solar radiation (MJ/m^2), wind velocity (meter/sec.), wet-days frequency (number of days) and evapotranspiration (mm/day) were found to be in the range of (9.90 to 26.44), (26.06 to 134.71), (11738 to 24119), (1.397 to 2.237), (1.46 to 5.12) and (3.96 to 8.46) respectively. Rapid climate/weather severities which significantly enhance the forest fire events were observed in the month of April and May. The analysis of the Pearson Correlation Coefficient (PCC) values of climate parameters showed a significant correlation with forest fire events. The analysis of predicted (2050) climate anomalies data (RCP-6) for the month of April and annual precipitation manifest the significant rise in April temperature and reduction in annual precipitation observed over large part of high forest fire grids will certainly impact adversely to the future forest fire scenario.


2021 ◽  
pp. 261-276
Author(s):  
Kapila Sharma ◽  
Gopal Thapa

Forest ecosystems are depleting and heading towards degradation which would adversely affect the world's socio-economic harmony. Various disasters disturb the cordial relationship of the flora and fauna and impose imbalance in the ecology as a whole; forest fire is one of its kind. India has witnessed a 125% rise in forest fire occurrences between the years 2015 and 2017. This paper presents a study of various factors and the analysis of forest fire in Sikkim. The period of 10 years, forest fire incidences, i.e., from the year 2004 to the year 2014 have been considered for the study. The forest fire data was collected from Forest and Environment Department, Government of Sikkim, and preliminary processing was performed to check for anomalies. The study observed that there has been an increased forest fire incidence over the years and highest being in the year 2009. These fire incidences have damaged a total area of 5,047.16 ha of land damaging various flora and fauna. It was observed that the maximum forest fire cases are below an altitude of 1500m, during winter months (December to February extending to March) and in sub-tropical Sal (Shorea robusta) forest. West district of Sikkim recorded the highest number of forest fire incidences and area covered followed by south and east districts; the north district was least affected. As per the visual interpretation of forest fire incidence data and literature review, the main factors responsible for forest fire in Sikkim are low rainfall, dry winter season, and type of vegetation. Also, a linear regression was performed between weather factors like average temperature (°C), relative humidity (%), and wind velocity (Km/h) on incidences of forest fire between the year 2009-2014 (n=389). It was found that the average temperature (r=0.37, Slope=9.59 and SD= ±12.00) and relative humidity (r=-0.6, Slope=-4.52, and SD=±2.68) plays a moderate linear relationship in influencing the incidences of forest fires. However, wind velocity showed almost a flat curve indicating its minimal role in influencing forest fire incidences. Parameter modelling and preparation of forest fire risk zone map would be an effective tool in preventing and managing forest fire in Sikkim.


2020 ◽  
Vol 29 (7) ◽  
pp. 595 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Jon E. Keeley

The fire regime is a central framing concept in wildfire science and ecology and describes how a range of wildfire characteristics vary geographically over time. Understanding and mapping fire regimes is important for guiding appropriate management and risk reduction strategies and for informing research on drivers of global change and altered fire patterns. Most efforts to spatially delineate fire regimes have been conducted by identifying natural groupings of fire parameters based on available historical fire data. This can result in classes with similar fire characteristics but wide differences in ecosystem types. We took a different approach and defined fire regime ecoregions for California to better align with ecosystem types, without using fire as part of the definition. We used an unsupervised classification algorithm to segregate the state into spatial clusters based on distinctive biophysical and anthropogenic attributes that drive fire regimes – and then used historical fire data to evaluate the ecoregions. The fire regime ecoregion map corresponded well with the major land cover types of the state and provided clear separation of historical patterns in fire frequency and size, with lower variability in fire severity. This methodology could be used for mapping fire regimes in other regions with limited historical fire data or forecasting future fire regimes based on expected changes in biophysical characteristics.


2015 ◽  
Vol 24 (2) ◽  
pp. e031 ◽  
Author(s):  
Antonio Vázquez ◽  
José M. Climent ◽  
Luis Casais ◽  
José R. Quintana

<p><em>Aim of study</em>. Fire regimes are frequently dynamic and change as a function of the interactions between the three main fire drivers: fuels, ignitions and climatic conditions. We characterized the recent period (1974-2005) and performed estimates for the future fire regime</p><p><em>Area of study</em>. We have considered five pine and another four woodland types by means of the analyses of 100 reference areas in peninsular Spain.</p><p><em>Material and methods</em>. The estimates of the expected alterations in fire frequency and the fire rotation period were based on models previously developed for the climatic scenarios SRES A2 and B2.</p><p><em>Main results</em>. The results point to the large variability in fire frequency and rotation periods between the woodland types as defined, and also among the reference areas delimited for each of them. Fire frequencies will increase for all woodland types while very relevant shortenings of the fire rotation periods are expected. For the 32 yr period analysed, rotation periods longer than 500 yr were obtained in 54% of the reference areas while this percentage would decrease to 31% in the B2 and to 29% in the A2 climatic scenario. In the most affected woodland type, <em>P. pinaster</em>, from a median rotation period of 83 yr it would decrease to 26 yr in the B2 and to 20 yr in the A2 climatic scenario.</p><p><em>Research highlights</em>. We conclude that the predicted increases in fire activity will have adverse effects on some of the main Spanish woodland types due to the expected future disruptions in the fire regime.  </p><p><strong>Keywords: </strong>Forest fires; fire regime; fire frequency; fire rotation period; climatic change.</p><p><strong>Abbreviations used: </strong>SRES: Special Report on Emissions Scenarios; IPCC: Intergovernmental Panel on Climate Change; RA: Reference Areas.</p>


2015 ◽  
Vol 17 (1) ◽  
pp. 175-185

<div> <p>The present study analyses future climate uncertainty for the 21st century over Tamilnadu state for six weather parameters: solar radiation, maximum temperature, minimum temperature, relative humidity, wind speed and rainfall. The climate projection data was dynamically downscaled using high resolution regional climate models, PRECIS and RegCM4 at 0.22&deg;x0.22&deg; resolution. PRECIS RCM was driven by HadCM3Q ensembles (HQ0, HQ1, HQ3, HQ16) lateral boundary conditions (LBCs) and RegCM4 driven by ECHAM5 LBCs for 130 years (1971-2100). The deviations in weather variables between 2091-2100 decade and the base years (1971-2000) were calculated for all grids of Tamilnadu for ascertaining the uncertainty. These deviations indicated that all model members projected no appreciable difference in relative humidity, wind speed and solar radiation. The temperature (maximum and minimum) however showed a definite increasing trend with 1.8 to 4.0&deg;C and 2.0 to 4.8&deg;C, respectively. The model members for rainfall exhibited a high uncertainty as they projected high negative and positive deviations (-379 to 854 mm). The spatial representation of maximum and minimum temperature indicated a definite rhythm of increment from coastal area to inland. However, variability in projected rainfall was noticed.</p> </div> <p>&nbsp;</p>


Agromet ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 1-10
Author(s):  
Sri Nurdiati ◽  
Ardhasena Sopaheluwakan ◽  
Pandu Septiawan

Land and forest fires in Kalimantan and Sumatra, Indonesia occurred annually at different magnitude and duration. Climate and sea interaction, like El Niño, influences the severity of dry seasons preceding the fires. However, research on the influence of El Niño intensity to fire regime in Kalimantan and Sumatra is limited. Therefore, this study aims to analyze the spatial and temporal patterns of the effects of El Niño intensity on land and forest fires in fire-prone provinces in Indonesia. Here, we applied the empirical orthogonal function analysis based on singular value decomposition to determine the dominant patterns of hotspots and rainfall data that evolve spatially and temporally. For analysis, the study required the following data: fire hotspots, dry-spell, and rainfall for period 2001-2019. This study revealed that El Niño intensity had a different impacts for each province. Generally, El Niño will influence the severity of forest fire events in Indonesia. However, we found that the impact of El Niño intensity varied for Kalimantan, South Sumatra, and Riau Province. Kalimantan was the most sensitive province to the El Niño event. The duration and number of hotspots in Kalimantan increased significantly even in moderate El Niño event. This was different for South Sumatra, where the duration and number of hotspots only increased significantly when a strong El Niño event occurred.


Author(s):  
A. A. Renkas ◽  
V. V. Popovych ◽  
A. M. Dominik

Localization and forest fire suppression is an urgent problem for the whole world. Given the heterogeneity of forests on the planet, approaches to modeling the spread of fires and their extinguishing are different. In this article a method for determining the required number of forces and means for the localization of ground forest fires is offered, taking into account the location of firefighting equipment in forests. To forecast the spread of fire, equidistant places from the fire departments in forests were chosen using Voronoi diagrams. The results of the calculation make it possible to conclude whether there are enough available forces and means to localize the predicted fire and to suggest additional firefighting equipment locations. The use of Voronoi diagrams for the State Enterprise "Zhovkva Forestry" in the Lviv region showed 12 dangerous areas, which are located the furthest from the fire departments. The method for determining the optimal location of firefighting equipment was applied to the Butynskyi forestry in Zhovkva forestry enterprise. Reducing the time of free spread of ground forest fires by 25% using rational placement of firefighting equipment and machinery, allows to reduce the number of employees for its localization by 53.8%.


2019 ◽  
Vol 170 (5) ◽  
pp. 242-250
Author(s):  
Aron Ghiringhelli ◽  
Gianni Boris Pezzatti ◽  
Marco Conedera

The “forest fire 2020” program of Canton Ticino The Canton of Ticino has a long-lasting experience in facing forest fires. As a result, a tradition in forest fire documentation and analysis exists and the forest fire management approach is continuously reviewed and improved with the aim to preserve the forest protection functions and to keep the mountain areas safe for the inhabitants. The fire regime has been reduced in Ticino since the seventies of last century thanks to improvement of the firefighting organization and fire control techniques (e.g. systematic use of helicopters for the aerial fire control) and the possibility of declaring a total fire ban in the open. However the demand in terms of protection of human lives and goods of the modern society is raising and as consequence of the climate change fire risk may increase in the future. For this reason two years ago the forest service of Canton Ticino developed the “forest fire 2020” program, in collaboration with the cantonal fire brigades association and the federal research Institute WSL. The program consists of four interdependent activity modules, which are 1) prevention, 2) organizational and technical measures, 3) firefighting and control, 4) burnt area restoration. The forest service is responsible for the fire-danger rating, the fire-ban release, the mentoring of local authorities in forest management questions and for planning pre-suppression facilities (e.g. water points for helicopters). It is also responsible for defining the mission rules for aerial firefighting, for collecting the data for the statistics, and for planning the post-fire forest restoration measures. The fire brigades are in charge of the firefighting tasks, by first intervening with the urban fire brigades and in case of need requiring the support of specialized forest-fire brigades. During the firefighting actions the forest service takes a consulting role. The first two years of implementation confirmed the suitability of the “forest fire 2020” program. Potential improvements have been however detected and are under implementation, such as the completion of the pre-suppression infrastructures, a better coordination between aerial and terrestrial firefighting and the strengthening of the specialized forest-fire brigades.


2021 ◽  
Vol 6 (1) ◽  
pp. 29-41
Author(s):  
T. I. Drozdova ◽  
E. V. Sorokovikova

The urgency of the ecological problem of natural forest fires in Russia, especially in rich forests of Eastern Siberia, makes it necessary to study their features, consequences, and measures to combat them. The aim of the article is to assess the state of forest fires in Irkutsk region over the last ten years. Based on the statistical data of monitoring in 33 districts, the dynamics of fires was studied, and areas affected by fires were identified. The largest number of fires was revealed in Irkutsk and Bratsk districts. The fire rate was assessed by districts in fire hazardous periods, and the largest fire rate was identified in Bratsk, Kachug, Irkutsk, and Katanga districts. The fire indicators for 2019 were compared with the average indicators for each district. A comparative analysis of the forest fire situation in Irkutsk region and its districts was carried out. Recommendations on possible firefighting measures were provided.


Sign in / Sign up

Export Citation Format

Share Document