scholarly journals The Effects of the Movement Tempo on the One-Repetition Maximum Bench Press Results

2020 ◽  
Vol 72 (1) ◽  
pp. 151-159 ◽  
Author(s):  
Michal Wilk ◽  
Artur Golas ◽  
Piotr Zmijewski ◽  
Michal Krzysztofik ◽  
Aleksandra Filip ◽  
...  

AbstractDifferent tempos of movement can be used during resistance training, but programming them is often a trial-and-error practice, as changing the speed at which the exercise is performed does not always correspond with the tempo at which the 1-repetition-maximum occurred. Therefore, the aim of this study was to determine the effect of different movement tempos during the bench press (BP) exercise on the one-repetition maximum (1RM) load. Ninety men (age = 25.8 ± 5.3 years, body mass = 80.2 ± 14.9 kg), with a minimum one year of resistance training experience took part in the study. Using a randomized crossover design, each participant completed the BP 1RM test with five different movement tempos: V/0/V/0, 2/0/V/0, 5/0/V/0, 8/0/V/0 and 10/0/V/0. Repeated measures ANOVA compared the differences between the 1RM at each tempo. The 1RM load was significantly greater during V/0/V/0 and 2/0/V/0 compared to 5/0/V/0, 8/0/V/0, and 10/0/V/0 (p < 0.01). Furthermore, the 1RM load was significantly greater during 5/0/V/0 compared to 8/0/V/0 and 10/0/V/0 (p < 0.01), but there were no differences between either V/0/V/0 and 2/0/V/0 (p = 0.92) or between 8/0/V/0 and 10/0/V/0 (p = 0.08). Therefore, different movement tempos used during training should be accompanied by their own tempo-specific 1RM testing, as slower eccentric phases significantly decrease maximal concentric performance. Furthermore, 1RM test procedures should include information about the movement tempo used during the test protocol. In addition, the standardization of the tempo should be taken into account in investigations that use the 1 RM test to assess the effects of any treatment on maximal muscle strength.

2020 ◽  
Vol 12 (6) ◽  
pp. 2312
Author(s):  
Javier Peláez Barrajón ◽  
Alejandro F. San Juan

The aim of this study was to determine the validity and reliability that a smartphone accelerometer (ACC) used by a mobile basic program (MBP) can provide to measure the mean velocity of a bench-press (BP) lift. Ten volunteers participated in the study (age 23.1 ± 2.5 years; mean ± SD). They had more than one year of resistance training experience in BP exercise. All performed three attempts with different loads: 70%, 90%, and 100% of the estimated value of the one-repetition maximum (1RM). In each repetition, the mean velocity was measured by a validated linear transducer and the ACC. The smartphone accelerometer used by the mobile basic program showed no significant differences between the mean velocities at 70% 1RM lifts (ACC = 0.52 ± 0.11 m/s; transducer = 0.54 ± 0.09 m/s, p > 0.05). However, significant differences were found in the mean velocities for 90% 1RM (ACC = 0.46 ± 0.09 m/s; transducer = 0.31 ± 0.03 m/s, p < 0.001), and 100% 1RM (ACC = 0.33 ± 0.21 m/s; transducer = 0.16 ± 0.04 m/s, p < 0.05). The accelerometer is sensitive enough to measure different lift velocities, but the algorithm must be correctly calibrated.


Author(s):  
Michal Krzysztofik ◽  
Michal Wilk ◽  
Aleksandra Filip ◽  
Piotr Zmijewski ◽  
Adam Zajac ◽  
...  

Background: The aim of the present study was to evaluate the effects of post-activation performance enhancement (PAPE) on resistance training volume during the bench press exercise (BP). The study included 12 healthy strength-trained males (age 25.2 ± 2.1 years, body mass 92.1 ± 8.7 kg, BP one-repetition maximum (1RM) 28.8 ± 10.5 kg, training experience 6.3 ± 2.1 years). Methods: The experiment was performed following a randomized crossover design, where each participant performed two different exercise protocols with a conditioning activity (CA) consisting of the BP with three sets of three repetitions at 85% 1RM (PAPE), and a control without the CA (CONT). To assess the differences between PAPE and CONT, the participants performed three sets of the BP to volitional failure at 60% 1RM. The differences in the number of performed repetitions (REP), time under tension (TUT), peak power output (PP), mean of peak power output (PPMEAN), mean power output (MP), peak bar velocity (PV), mean of peak bar velocity (PVMEAN), and mean bar velocity (MV) between the CONT and PAPE conditions were examined using repeated measures ANOVA. Results: The post-hoc analysis for the main condition effect indicated significant increases in TUT (p < 0.01) for the BP following PAPE, compared to the CONT condition. Furthermore, there was a significant increase in TUT (p < 0.01) in the third set for PAPE compared to the CONT condition. No statistically significant main effect was revealed for REP, PP, PV, PPMEAN, PVMEAN, MP, and MV. Conclusion: The main finding of the study was that the PAPE protocol increased training volume based on TUT, without changes in the number of preformed REP.


2021 ◽  
pp. 194173812097786
Author(s):  
Amador García-Ramos ◽  
Danica Janicijevic ◽  
Ivan Jukic

Background: One-repetition maximum (1RM) tests are time-consuming, and they might not always be logistically possible or warranted due to increased risk of injury when performed incorrectly or by novice athletes. Repetitions-to-failure tests are a widespread method of predicting the 1RM, but its accuracy may be compromised by several factors such as the type of exercise, sex, training history, and the number of repetitions completed in the test. Hypothesis: The touch-and-go bench press would provide a higher 1RM than the concentric-only bench press for both genders regardless of whether the 1RM was obtained by the direct or repetitions-to-failure method and the error in the 1RM prediction would be positively correlated with the number of repetitions performed to failure and negatively correlated with the 1RM strength and resistance training experience. Study Design: Cross-sectional study. Level of Evidence: Level 3. Methods: A total of 113 adults (87 men and 26 women) were tested on 2 sessions during the concentric-only and touch-and-go bench press. Each session consisted of an incremental loading test until reaching the 1RM load, followed by a repetitions-to-failure test. Results: The 1RM was higher for the touch-and-go bench press using both the direct (men, 7.80%; women, 7.62%) and repetitions-to-failure method (men, 8.29%; women, 7.49%). A significant, although small, correlation was observed between the error in the estimation of the 1RM and the number of repetitions performed ( r = 0.222; P < 0.01), 1RM strength ( r = −0.169; P = 0.01), and resistance training experience ( r = −0.136; P = 0.05). Conclusion: The repetitions-to-failure test is a valid method of predicting the 1RM during the concentric-only and touch-and-go bench press variants. However, the accuracy of the prediction could be compromised with weaker and less experienced individuals and if more than 10 repetitions are completed during the repetitions-to-failure test. Clinical Relevance: The repetitions-to-failure test does not require any sophisticated equipment and enables a widespread use in different training environments.


2019 ◽  
Author(s):  
Cedrik Armes ◽  
Henry Standish-Hunt ◽  
Patroklos Androulakis-Korakakis ◽  
Nick Michalopoulos ◽  
Tsvetelina Georgieva ◽  
...  

In resistance training, the use of predicting proximity to momentary task failure (MF, i.e. maximum effort), and repetitions in reserve scales specifically, is a growing approach to monitoring and controlling effort. However, its validity is reliant upon accuracy in the ability to predict MF which may be affected by congruence of the perception of effort compared with the actual effort required. The present study examined participants with at least one year of resistance training experience predicting their proximity to MF in two different experiments using a deception design. Within each experiment participants performed four trials of knee extensions with single sets (i.e. bouts of repetitions) to their self-determined repetition maximum (sdRM; when they predicted they could not complete the next repetition if attempted and thus would reach MF if they did) and MF (i.e. where despite attempting to do so they could not complete the current repetition). For the first experiment (n = 14) participants used loads equal to 70% of a one repetition maximum (1RM; i.e. the heaviest load that could be lifted for a single repetition) performed in a separate baseline session. Aiming to minimize participants between day variability in repetition performances, in the second separate experiment (n = 24) they used loads equal to 70% of their daily isometric maximum voluntary contraction (MVC). Results suggested that participants typically under predicted the number of repetitions they could perform to MF with a meta-analytic estimate across experiments of 2.02 [95%CIs 0.0 to 4.04]. Participants with at least one year of resistance training experience are likely not adequately accurate at gauging effort in submaximal conditions. This suggests that perceptions of effort during resistance training task performance may not be congruent with the actual effort required. This has implications for controlling, programming, and manipulating the actual effort in resistance training and potentially on the magnitude of desired adaptations such as improvements in muscular hypertrophy and strength.


2020 ◽  
Vol 11 ◽  
Author(s):  
Cedrik Armes ◽  
Henry Standish-Hunt ◽  
Patroklos Androulakis-Korakakis ◽  
Nick Michalopoulos ◽  
Tsvetelina Georgieva ◽  
...  

In resistance training, the use of predicting proximity to momentary task failure (MF, i.e., maximum effort), and repetitions in reserve scales specifically, is a growing approach to monitoring and controlling effort. However, its validity is reliant upon accuracy in the ability to predict MF which may be affected by congruence of the perception of effort compared with the actual effort required. The present study examined participants with at least 1 year of resistance training experience predicting their proximity to MF in two different experiments using a deception design. Within each experiment participants performed four trials of knee extensions with single sets (i.e., bouts of repetitions) to their self-determined repetition maximum (sdRM; when they predicted they could not complete the next repetition if attempted and thus would reach MF if they did) and MF (i.e., where despite attempting to do so they could not complete the current repetition). For the first experiment (n = 14) participants used loads equal to 70% of a one repetition maximum (1RM; i.e., the heaviest load that could be lifted for a single repetition) performed in a separate baseline session. Aiming to minimize participants between day variability in repetition performances, in the second separate experiment (n = 24) they used loads equal to 70% of their daily isometric maximum voluntary contraction (MVC). Results suggested that participants typically under predicted the number of repetitions they could perform to MF with a meta-analytic estimate across experiments of 2.0 [95%CIs 0.0 to 4.0]. Participants with at least 1 year of resistance training experience are likely not adequately accurate at gauging effort in submaximal conditions. This suggests that perceptions of effort during resistance training task performance may not be congruent with the actual effort required. This has implications for controlling, programming, and manipulating the actual effort in resistance training and potentially on the magnitude of desired adaptations such as improvements in muscular hypertrophy and strength.


2020 ◽  
Vol 21 (1) ◽  
pp. 22-31
Author(s):  
Gustavo Pedrosa ◽  
Bruno Corrêa da Silva ◽  
Gisele Ferreira Barbosa ◽  
Marcos Rodrigues dos Santos ◽  
Marina Simôes ◽  
...  

2018 ◽  
pp. 1-13 ◽  
Author(s):  
Amador García-Ramos ◽  
Alejandro Pérez-Castilla ◽  
Francisco Javier Villar Macias ◽  
Pedro Á. Latorre-Román ◽  
Juan A. Párraga ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Masatoshi Nakamura ◽  
Tomoichi Yoshida ◽  
Ryosuke Kiyono ◽  
Shigeru Sato ◽  
Nobushige Takahashi

Abstract Background The purpose of this study was to clarify whether there is a synergistic effect on muscular strength and hypertrophy when low-intensity resistance training is performed after heat stress. Methods Thirty healthy young male volunteers were randomly allocated to either the low-intensity resistance training with heat stress group or the control group. The control group performed low-intensity resistance training alone. In the low-intensity resistance training with heat stress group, a hot pack was applied to cover the muscle belly of the triceps brachii for 20 min before the training. The duration of the intervention was 6 weeks. In both groups, the training resistance was 30% of the one repetition maximum, applied in three sets with eight repetitions each and 60-s intervals. The one repetition maximum of elbow extension and muscle thickness of triceps brachii were measured before and after 6 weeks of low intensity resistance training. Results There was no significant change in the one-repetition maximum and muscle thickness in the control group, whereas there was a significant increase in the muscle strength and thickness in the low-intensity resistance training with heat stress group. Conclusion The combination of heat stress and low-intensity resistance training was an effective method for increasing muscle strength and volume. Trial registration University Hospital Medical Information Network Clinical Trials Registry (UMIN000036167; March 11, 2019).


2010 ◽  
Vol 5 (2) ◽  
pp. 184-196 ◽  
Author(s):  
Lawrence W. Judge ◽  
Jeanmarie R. Burke

Purpose:To determine the effects of training sessions, involving high-resistance, low-repetition bench press exercise, on strength recovery patterns, as a function of gender and training background.Methods:The subjects were 12 athletes (6 males and 6 females) and age-matched college students of both genders (4 males and 4 females). The subjects completed a 3-wk resistance training program involving a bench press exercise, 3 d/wk, to become familiar with the testing procedure. After the completion of the resistance training program, the subjects, on three consecutive weeks, participated in two testing sessions per week, baseline session and recovery session. During the testing sessions, subjects performed fve sets of the bench press exercise at 50% to 100% of perceived fve repetition maximum (5-RM). Following the weekly baseline sessions, subjects rested during a 4-, 24-, or 48-h recovery period. Strength measurements were estimates of one repetition maximum (1-RM), using equivalent percentages for the number of repetitions completed by the subject at the perceived 5-RM effort of the bench press exercise.Results:The full-factorial ANOVA model revealed a Gender by Recovery Period by Testing Session interaction effect, F(2, 32) = 10.65; P < .05. Among male subjects, decreases in estimated 1-RM were detected at the 4- and 24-h recovery times. There were no differences in muscle strength among the female subjects, regardless of recovery time.Conclusions:For bench press exercises, using different recovery times of 48 h for males and 4 h for females may optimize strength development as a function of gender.


Author(s):  
Xavier Roy ◽  
Keven Arseneault ◽  
Pierre Sercia

This study compared the activation of the clavicular, sternocostal and abdominal heads of the pectoralis major (PM) and the long portion of the triceps brachii during the execution of the bench press with several inclinations, grip types, and grip widths. Thirteen healthy men with more than a year of resistance training experience participated in this study. The subjects performed 6 repetitions of various variations of the bench press at angles of -15°, 0° and 30° with grip width of 100% and 200% of their biacromial width in both pronation and supination with a load equivalent of their respective 12RM for each movement. EMG, bar acceleration and shoulder angle were recorded during each repetition. Activation of the clavicular head of the PM was, compared to a wide pronation at 0°, significantly higher at a close pronation at 0°and 30°; during a close supination at 30° and during a wide supination at 30°. Activation of the sternocostal head of the PM was, during a wide pronation at 0°, significantly higher than during a close supination at 0°, 30° and -15°; during a wide supination at 30; during a wide supination at 0° and 30° and at close pronation at 30° and -15°. Activation of the abdominal head of the PM was significantly better with wide pronation at -15° and 0° compared to all positions at 30°. Triceps brachii were better solicited during close pronation at 0° and -15° compared to supinated grip at 0° and 30°. Results from this study show that the bench press exercise performed with a wide pronation grip at 0° can maximize the activation of the three heads of the PM.


Sign in / Sign up

Export Citation Format

Share Document