scholarly journals Vertical Jumping as a Monitoring Tool in Endurance Runners: A Brief Review

2021 ◽  
Vol 80 (1) ◽  
pp. 297-308
Author(s):  
Felipe García-Pinillos ◽  
Rodrigo Ramírez-Campillo ◽  
Daniel Boullosa ◽  
Pedro Jiménez-Reyes ◽  
Pedro Á. Latorre-Román

Abstract Jumping performance (e.g., countermovement jump [CMJ]), as a measure of neuromuscular performance, has been suggested as an easy-to-use tool which simultaneously provides neuromuscular and metabolic information and, thereby, allows coaches to confidently monitor the status of their athletes during a workout. This hypothesis has been satisfactorily tested with sprint athletes. However, the rationale for the use of CMJ height loss as an index to monitor the workload during an endurance running session is not sufficiently evidence-based. First, it is assumed that a CMJ height loss occurs during typical interval training for endurance runners. Second, it is also assumed that a significant relationship between metabolic stress and the neuromuscular strain induced during these endurance workouts exists. These two assumptions will be questioned in this review by critically analyzing the kinetics of CMJ performance during and after running workouts, and the relationship between neuromuscular and physiological stress induced during different protocols in endurance runners. The current evidence shows that fatigue induced by common running workouts for endurance runners does not counterbalance the potentiation effect in the CMJ height. Additionally, the findings reported among different studies are consistent regarding the lack of association between CMJ height loss and physiological stress during interval sessions in endurance runners. In practical terms, the authors suggest that this marker of neuromuscular fatigue may not be used to regulate the external training load during running workouts in endurance runners. Nevertheless, the analysis of CMJ height during running workouts may serve to monitor chronic adaptations to training in endurance runners.

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 905-906
Author(s):  
Michael J. Ormsbee ◽  
Amber W. Kinsey ◽  
Minwook Chong ◽  
Heather S. Friedman ◽  
Tonya Dodge ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Enrique Rodríguez ◽  
Finley Grover Thomas ◽  
M. Florencia Camus ◽  
Nick Lane

Mitochondrial function depends on direct interactions between respiratory proteins encoded by genes in two genomes, mitochondrial and nuclear, which evolve in very different ways. Serious incompatibilities between these genomes can have severe effects on development, fitness and viability. The effect of subtle mitonuclear mismatches has received less attention, especially when subject to mild physiological stress. Here, we investigate how two distinct physiological stresses, metabolic stress (high-protein diet) and redox stress [the glutathione precursor N-acetyl cysteine (NAC)], affect development time, egg-to-adult viability, and the mitochondrial physiology of Drosophila larvae with an isogenic nuclear background set against three mitochondrial DNA (mtDNA) haplotypes: one coevolved (WT) and two slightly mismatched (COX and BAR). Larvae fed the high-protein diet developed faster and had greater viability in all haplotypes. The opposite was true of NAC-fed flies, especially those with the COX haplotype. Unexpectedly, the slightly mismatched BAR larvae developed fastest and were the most viable on both treatments, as well as control diets. These changes in larval development were linked to a shift to complex I-driven mitochondrial respiration in all haplotypes on the high-protein diet. In contrast, NAC increased respiration in COX larvae but drove a shift toward oxidation of proline and succinate. The flux of reactive oxygen species was increased in COX larvae treated with NAC and was associated with an increase in mtDNA copy number. Our results support the notion that subtle mitonuclear mismatches can lead to diverging responses to mild physiological stress, undermining fitness in some cases, but surprisingly improving outcomes in other ostensibly mismatched fly lines.


2015 ◽  
Vol 49 (1) ◽  
pp. 209-217 ◽  
Author(s):  
Felipe García-Pinillos ◽  
Víctor Manuel Soto-Hermoso ◽  
Pedro Ángel Latorre-Román

Abstract This study aimed to describe the acute impact of extended interval training (EIT) on physiological and thermoregulatory levels, as well as to determine the influence of athletic performance and age effect on the aforementioned response in endurance runners. Thirty-one experienced recreational male endurance runners voluntarily participated in this study. Subjects performed EIT on an outdoor running track, which consisted of 12 runs of 400 m. The rate of perceived exertion, physiological response through the peak and recovery heart rate, blood lactate, and thermoregulatory response through tympanic temperature, were controlled. A repeated measures analysis revealed significant differences throughout EIT in examined variables. Cluster analysis grouped according to the average performance in 400 m runs led to distinguish between athletes with a higher and lower sports level. Cluster analysis was also performed according to age, obtaining an older group and a younger group. The one-way analysis of variance between groups revealed no significant differences (p≥0.05) in the response to EIT. The results provide a detailed description of physiological and thermoregulatory responses to EIT in experienced endurance runners. This allows a better understanding of the impact of a common training stimulus on the physiological level inducing greater accuracy in the training prescription. Moreover, despite the differences in athletic performance or age, the acute physiological and thermoregulatory responses in endurance runners were similar, as long as EIT was performed at similar relative intensity.


Heart ◽  
2021 ◽  
pp. heartjnl-2020-318241
Author(s):  
Charlotte Greer ◽  
Richard W Troughton ◽  
Philip D Adamson ◽  
Sarah L Harris

Preterm birth affects 1 in 10 pregnancies worldwide, with increasing survival rates over the last 30 years. However, as this new generation of long-term survivors approaches middle age, recent studies have revealed increased cardiovascular risk factors and higher rates of ischaemic heart disease and heart failure. Cardiovascular imaging has identified smaller cardiac chamber size, changes in myocardial mass and impaired ventricular function, particularly under physiological stress. Accordingly, this population should be recognised as having a higher risk of heart failure as they age. In this review, we present current evidence for increased rates of heart failure and evidence of alterations in cardiac structure and function in those born preterm. We discuss potential mechanisms to explain this risk including greater frequency of co-morbidities known to be associated with heart failure. We also explore potential mechanistic links specific to the preterm-born population, including the impact of premature birth on myocardial and vascular development and the effects of perinatal haemodynamic changes and chronic lung disease on the developing heart. We highlight gaps in our knowledge and consider implications for patient management relevant to the adult physician.


Biology ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 70 ◽  
Author(s):  
Paulo Gentil ◽  
Ricardo Borges Viana ◽  
João Pedro Naves ◽  
Fabrício Boscolo Del Vecchio ◽  
Victor Coswig ◽  
...  

Strategies aiming to promote weight loss usually include anything that results in an increase in energy expenditure (exercise) or a decrease in energy intake (diet). However, the probability of losing weight is low and the probability of sustained weight loss is even lower. Herein, we bring some questions and suggestions about the topic, with a focus on exercise interventions. Based on the current evidence, we should look at how metabolism changes in response to interventions instead of counting calories, so we can choose more efficient models that can account for the complexity of human organisms. In this regard, high-intensity training might be particularly interesting as a strategy to promote fat loss since it seems to promote many physiological changes that might favor long-term weight loss. However, it is important to recognize the controversy of the results regarding interval training (IT), which might be explained by the large variations in its application. For this reason, we have to be more judicious about how exercise is planned and performed and some factors, like supervision, might be important for the results. The intensity of exercise seems to modulate not only how many calories are expended after exercise, but also where they came from. Instead of only estimating the number of calories ingested and expended, it seems that we have to act positively in order to create an adequate environment for promoting healthy and sustainable weight loss.


2019 ◽  
Vol 41 (01) ◽  
pp. 12-20 ◽  
Author(s):  
Patrick Wahl ◽  
Sebastian Mathes ◽  
Wilhelm Bloch ◽  
Philipp Zimmer

AbstractIn view of the growing amount of (intense) training in competitive sports, quick recovery plays a superior role in performance restoration. The aim of the present study was to compare the effects of active versus passive recovery during high-intensity interval training (HIIT) and sprint interval training (SIT) protocols on acute alterations of circulating blood cells. Twelve male triathletes/cyclists performed 1) a HIIT consisting of 4×4 min intervals, 2) a SIT consisting of 4×30s intervals, separated by either active or passive recovery. Blood samples were collected immediately before and at 0’, 30’, 60’ and 180’ (minutes) post-exercise. Outcomes comprised leukocytes, lymphocytes, neutrophils, mixed cell count, platelets, cellular inflammation markers (neutrophil/lymphocyte-ratio (NLR), platelet/lymphocyte-ratio (PLR)), and the systemic immune-inflammation index (SII). In view of HIIT, passive recovery attenuated the changes in lymphocytes and neutrophils compared to active recovery. In view of SIT, active recovery attenuated the increase in leukocytes, lymphocytes and absolute mixed cell count compared to passive recovery. Both protocols, independent of recovery, significantly increased NLR, PLR and SII up to 3h of recovery compared to pre-exercise values. The mode of recovery influences short-term alterations in the circulating fraction of leukocytes, lymphocytes, neutrophils and the mixed cell count, which might be associated with different hormonal and metabolic stress responses due to the mode of recovery.


2018 ◽  
Vol 27 (150) ◽  
pp. 180074 ◽  
Author(s):  
Luca Richeldi ◽  
Francesco Varone ◽  
Miguel Bergna ◽  
Joao de Andrade ◽  
Jeremy Falk ◽  
...  

A proportion of patients with interstitial lung diseases (ILDs) are at risk of developing a progressive-fibrosing phenotype, which is associated with a deterioration in lung function and early mortality. In addition to idiopathic pulmonary fibrosis (IPF), fibrosing ILDs that may present a progressive phenotype include idiopathic nonspecific interstitial pneumonia, connective tissue disease-associated ILDs, hypersensitivity pneumonitis, unclassifiable idiopathic interstitial pneumonia, ILDs related to other occupational exposures and sarcoidosis. Corticosteroids and/or immunosuppressive therapies are sometimes prescribed to patients with these diseases. However, this treatment regimen may not be effective, adequate on its own or well tolerated, suggesting that there is a pressing need for efficacious and better tolerated therapies. Currently, the only approved treatments to slow disease progression in patients with IPF are nintedanib and pirfenidone. Similarities in pathobiological mechanisms leading to fibrosis between IPF and other ILDs that may present a progressive-fibrosing phenotype provide a rationale to suggest that nintedanib and pirfenidone may be therapeutic options for patients with the latter diseases.This review provides an overview of the therapeutic options currently available for patients with fibrosing ILDs, including fibrosing ILDs that may present a progressive phenotype, and explores the status of the randomised controlled trials that are underway to determine the efficacy and safety of nintedanib and pirfenidone.


2020 ◽  
Vol 15 (7) ◽  
pp. 927-933 ◽  
Author(s):  
Felipe García-Pinillos ◽  
Carlos Lago-Fuentes ◽  
Pedro A. Latorre-Román ◽  
Antonio Pantoja-Vallejo ◽  
Rodrigo Ramirez-Campillo

Context: Plyometric training promotes a highly effective neuromuscular stimulus to improve running performance. Jumping rope (JR) involves mainly foot muscles and joints, due to the quick rebounds, and it might be considered a type of plyometric training for improving power and stiffness, some of the key factors for endurance-running performance. Purpose: To determine the effectiveness of JR during the warm-up routine of amateur endurance runners on jumping performance, reactivity, arch stiffness, and 3-km time-trial performance. Methods: Athletes were randomly assigned to an experimental (n = 51) or control (n = 45) group. Those from the control group were asked to maintain their training routines, while athletes from the experimental group had to modify their warm-up routines, including JR (2–4 sessions/wk, with a total time of 10–20 min/wk) for 10 weeks. Physical tests were performed before (pretest) and after (posttest) the intervention period and included jumping performance (countermovement-jump, squat-jump, and drop-jump tests), foot-arch stiffness, and 3-km time-trial performance. Reactive strength index (RSI) was calculated from a 30-cm drop jump. Results: The 2 × 2 analysis of variance showed significant pre–post differences in all dependent variables (P < .001) for the experimental group. No significant changes were reported in the control group (all P ≥ .05). Pearson correlation analysis revealed a significant relationship between Δ3-km time trial and ΔRSI (r = −.481; P < .001) and ΔStiffness (r = −.336; P < .01). The linear-regression analysis showed that Δ3-km time trial was associated with ΔRSI and ΔStiffness (R2 = .394; P < .001). Conclusions: Compared with a control warm-up routine prior to endurance-running training, 10 weeks (2–4 times/wk) of JR training, in place of 5 minutes of regular warm-up activities, was effective in improving 3-km time-trial performance, jumping ability, RSI, and arch stiffness in amateur endurance runners. Improvements in RSI and arch stiffness were associated with improvements in 3-km time-trial performance.


Motor Control ◽  
2020 ◽  
Vol 24 (4) ◽  
pp. 499-511
Author(s):  
Pedro Ángel Latorre-Román ◽  
Juan Francisco Fernández-Povedano ◽  
Jesús Salas-Sánchez ◽  
Felipe García-Pinillos ◽  
Juan Antonio Párraga-Montilla

This study aimed to evaluate spatial and temporal perception in endurance runners as a mechanism of pacing control in comparison with other athletes (soccer players). A group of 38 endurance runners and 32 soccer players participated in this study. Runners displayed lower time differences and lower error than soccer players. Taking the athletic levels of endurance runners into consideration, significant differences (p = .011, Cohen’s d = 1.042) were found in the time differences (higher level group = 33.43 ± 29.43 vs. lower level group = 123.53 ±102.61). Significant correlations were found between time differences and performance in a Cooper test (r = −.546) and with the best time in a half marathon (r = .597). Temporal and spatial perception can be considered as a cognitive skill of endurance runners.


Sign in / Sign up

Export Citation Format

Share Document