scholarly journals Strictness vs. flexibility: Simulation-based recognition of strategies and its success in soccer

2021 ◽  
Vol 20 (1) ◽  
pp. 43-54
Author(s):  
J. Perl ◽  
J. Imkamp ◽  
D. Memmert

Abstract Introduction: Recognition and optimization of strategies in sport games is difficult in particular in case of team games, where a number of players are acting “independently” of each other. One way to improve the situation is to cluster the teams into a small number of tactical groups and to analyze the interaction of those groups. The aim of the study is the evaluation of the applicability of SOCCER© simulation in professional soccer by analyzing and simulation of the tactical group interaction. Methods: The players’ positions of tactical groups in soccer can be mapped to formation-patterns and then reflect strategic behaviour and interaction. Based on this information, Monte Carlo-Simulation allows for generating strategies, which – at least from the mathematical point of view – are optimal. In practice, behaviour can be orientated in those optimal strategies but normally is changing depending on the opponent team’s activities. Analyzing the game under the aspect of such simulated strategies revealed how strictly resp. flexible a team follows resp. varies strategic patterns. Approach: A Simulation- and Validation-Study on the basis of 40 position data sets of the 2014/15 German Bundesliga has been conducted to analyze and to optimize such strategic team behaviour in professional soccer. Results: The Validation-Study demonstrated the applicability of our tactical model. The results of the Simulation-Study revealed that offensive player groups need less tactical strictness in order to gain successful ball possession whereas defensive player groups need tactical strictness to do so. Conclusion: The strategic behaviour could be recognized and served as basis for optimization analysis: offensive players should play with a more flexible tactical orientation to stay in possession of the ball, whereas defensive players should play with a more planned orientation in order to be successful. The strategic behaviour of tactical groups can be recognized and optimized using Monte Carlo-based analysis, proposing a new and innovative approach to quantify tactical performance in soccer.

2011 ◽  
Vol 37 (1) ◽  
pp. 153-196 ◽  
Author(s):  
Verena Rieser ◽  
Oliver Lemon

We present a new data-driven methodology for simulation-based dialogue strategy learning, which allows us to address several problems in the field of automatic optimization of dialogue strategies: learning effective dialogue strategies when no initial data or system exists, and determining a data-driven reward function. In addition, we evaluate the result with real users, and explore how results transfer between simulated and real interactions. We use Reinforcement Learning (RL) to learn multimodal dialogue strategies by interaction with a simulated environment which is “bootstrapped” from small amounts of Wizard-of-Oz (WOZ) data. This use of WOZ data allows data-driven development of optimal strategies for domains where no working prototype is available. Using simulation-based RL allows us to find optimal policies which are not (necessarily) present in the original data. Our results show that simulation-based RL significantly outperforms the average (human wizard) strategy as learned from the data by using Supervised Learning. The bootstrapped RL-based policy gains on average 50 times more reward when tested in simulation, and almost 18 times more reward when interacting with real users. Users also subjectively rate the RL-based policy on average 10% higher. We also show that results from simulated interaction do transfer to interaction with real users, and we explicitly evaluate the stability of the data-driven reward function.


1976 ◽  
Vol 15 (01) ◽  
pp. 36-42 ◽  
Author(s):  
J. Schlörer

From a statistical data bank containing only anonymous records, the records sometimes may be identified and then retrieved, as personal records, by on line dialogue. The risk mainly applies to statistical data sets representing populations, or samples with a high ratio n/N. On the other hand, access controls are unsatisfactory as a general means of protection for statistical data banks, which should be open to large user communities. A threat monitoring scheme is proposed, which will largely block the techniques for retrieval of complete records. If combined with additional measures (e.g., slight modifications of output), it may be expected to render, from a cost-benefit point of view, intrusion attempts by dialogue valueless, if not absolutely impossible. The bona fide user has to pay by some loss of information, but considerable flexibility in evaluation is retained. The proposal of controlled classification included in the scheme may also be useful for off line dialogue systems.


2021 ◽  
Vol 2 (2) ◽  
pp. 132-151
Author(s):  
Vito Vitali ◽  
Florent Chevallier ◽  
Alexis Jinaphanh ◽  
Andrea Zoia ◽  
Patrick Blaise

Modal expansions based on k-eigenvalues and α-eigenvalues are commonly used in order to investigate the reactor behaviour, each with a distinct point of view: the former is related to fission generations, whereas the latter is related to time. Well-known Monte Carlo methods exist to compute the direct k or α fundamental eigenmodes, based on variants of the power iteration. The possibility of computing adjoint eigenfunctions in continuous-energy transport has been recently implemented and tested in the development version of TRIPOLI-4®, using a modified version of the Iterated Fission Probability (IFP) method for the adjoint α calculation. In this work we present a preliminary comparison of direct and adjoint k and α eigenmodes by Monte Carlo methods, for small deviations from criticality. When the reactor is exactly critical, i.e., for k0 = 1 or equivalently α0 = 0, the fundamental modes of both eigenfunction bases coincide, as expected on physical grounds. However, for non-critical systems the fundamental k and α eigenmodes show significant discrepancies.


2019 ◽  
Vol 4 (1) ◽  
pp. 697-711 ◽  
Author(s):  
Erika Quendler

AbstractTourism is vitally important to the Austrian economy. The number of tourist destinations, both farms and other forms of accommodation, in the different regions of Austria is considerably and constantly changing. This paper discusses the position of the ‘farm holiday’ compared to other forms of tourism. Understanding the resilience of farm holidays is especially important but empirical research on this matter remains limited. The term ‘farm holiday’ covers staying overnight on a farm that is actively engaged in agriculture and has a maximum of 10 guest beds. The results reported in this paper are based on an analysis of secondary data from 2000 and 2018 by looking at two types of indicator: (i) accommodation capacity (supply side) and (ii) attractiveness of a destination (demand side). The data sets cover Austria and its NUTS3 regions. The results show the evolution of farm holidays vis-à-vis other forms of tourist accommodation. In the form of a quadrant matrix they also show the relative position of farm holidays regionally. While putting into question the resilience of farm holidays, the data also reveals where farm holidays could act to expand this niche or learn and improve to effect a shift in their respective position relative to the market ‘leaders’. However, there is clearly a need to learn more about farm holidays within the local context. This paper contributes to our knowledge of farm holidays from a regional point of view and tries to elaborate on the need for further research.


2021 ◽  
Vol 50 ◽  
pp. 101301
Author(s):  
A.Z. Zheng ◽  
S.J. Bian ◽  
E. Chaudhry ◽  
J. Chang ◽  
H. Haron ◽  
...  

2007 ◽  
Vol 129 ◽  
pp. 83-87
Author(s):  
Hua Long Li ◽  
Jong Tae Park ◽  
Jerzy A. Szpunar

Controlling texture and microstructure evolution during annealing processes is very important for optimizing properties of steels. Theories used to explain annealing processes are complicated and always case dependent. An recently developed Monte Carlo simulation based model offers an effective tool for studying annealing process and can be used to verify the arbitrarily defined theories that govern such processes. The computer model takes Orientation Image Microscope (OIM) measurements as an input. The abundant information contained in OIM measurement allows the computer model to incorporate many structural characteristics of polycrystalline materials such as, texture, grain boundary character, grain shape and size, phase composition, chemical composition, stored elastic energy, and the residual stress. The outputs include various texture functions, grain boundary and grain size statistics that can be verified by experimental results. Graphical representation allows us to perform virtual experiments to monitor each step of the structural transformation. An example of applying this simulation to Si steel is given.


Sign in / Sign up

Export Citation Format

Share Document