scholarly journals Scaling the Hydraulic Functions of A Water Repellent Sandy Soil

2014 ◽  
Vol 28 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Heiner Stoffregen ◽  
Gerd Wessolek

Abstract The heterogeneity of both unsaturated hydraulic conductivity and water retention was measured with a high spatial resolution on a transect using an evaporation method. Fifteen undisturbed 100 cm3 soil cores were taken on a transect every 10 cm from the topsoil of a water repellent sandy site. Five dynamic water retention curves and four unsaturated conductivity curves were determined for each core. We conducted measurements without further saturation in the laboratory in order to achieve field-like conditions. The initial water contents were heterogeneous, indicating different hysteretic conditions and water repellent areas. The scattering of the water retention curves was high, while the heterogeneity of unsaturated conductivity curves was unexpectedly low. Two scaling approaches were used to describe the heterogeneity: one with and one without considering hysteresis. The concept of scaling applies well to describing the heterogeneity of both hydraulic functions. Including hysteresis leads to similar results than excluding hysteresis. The distribution of the hydraulic conductivity and the water retention were independent from each other. The results give important information for numerical simulation of the water flow with heterogeneous hydraulic functions.

2017 ◽  
Vol 21 (4) ◽  
pp. 189-195 ◽  
Author(s):  
Beibei Zhou ◽  
Xiaopeng Chen

The poor water retention capacity of sandy soils commonly aggregate soil erosion and ecological environment on the Chinese Loess Plateau. Due to its strong capacity for absorption and large specific surface area, the use of nanocarbon made of coconut shell as a soil amendment that could improve water retention was investigated. Soil column experiments were conducted in which a layer of nanocarbon mixed well with the soil was formed at a depth of 20 cm below the soil surface. Four different nanocarbon contents by weight (0%, 0.1%, 0.5%, and 1%) and five thicknesses of the nanocarbon- soil mixture layer ranging from 1 to 5 cm were considered. Cumulative infiltration and soil water content distributions were determined when water was added to soil columns. Soil Water Characteristic Curves (SWCC) were obtained using the centrifuge method. The principal results showed that the infiltration rate and cumulative infiltration increased with the increases of nanocarbon contents, to the thicknesses of the nano carbon-soil mixture layer. Soil water contents that below the soil-nano carbon layer decreased sharply. Both the Brooks-Corey and van Genuchten models could describe well the SWCC of the disturbed sandy soil with various nano carbon contents. Both the saturated water content (θs), residual water content (θr) and empirical parameter (α) increased with increasing nano carbon content, while the pore-size distribution parameter (n) decreased. The available soil water contents were efficiently increased with the increase in nanocarbon contents.


2020 ◽  
Vol 195 ◽  
pp. 01004
Author(s):  
Ali Kolahdooz ◽  
Hamed Sadeghi ◽  
Mohammad Mehdi Ahmadi

Dispersive soils, as one of the main categories of problematic soils, can be found in some parts of the earth, such as the eastern-south of Iran, nearby the Gulf of Oman. One of the most important factors enhancing the dispersive potential is the existence of dissolved salts in the soil water. The main objective of this study is to explore the influence of water salinity on the instability of a railway embankment due to rainfall infiltration. In order to achieve this goal, the embankment resting on a dispersive stratum is numerically modeled and subjected to transient infiltration flow. The effect of dispersion is simplified through variations in the soil-water retention curve with salinity. The measured water retention curves revealed that by omitting the natural salinity in the soil-water, the retention capability of the soil decreases; therefore, the unsaturated hydraulic conductivity of the soil stratum will significantly decline. According to the extensive decrease in the hydraulic conductivity of the desalinated materials, the rainfall cannot infiltrate in the embankment and the rainfall mostly runs off. However, in the saline embankment, the infiltration decreases the soil suction; and consequently, the factor of safety of the railway embankment decreases.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1826 ◽  
Author(s):  
Ji-Peng Wang ◽  
Pei-Zhi Zhuang ◽  
Ji-Yuan Luan ◽  
Tai-Heng Liu ◽  
Yi-Ran Tan ◽  
...  

Estimation of unsaturated hydraulic conductivity could benefit many engineering or research problems such as water flow in the vadose zone, unsaturated seepage and capillary barriers for underground waste isolation. The unsaturated hydraulic conductivity of a soil is related to its saturated hydraulic conductivity value as well as its water retention behaviour. By following the first author’s previous work, the saturated hydraulic conductivity and water retention curve (WRC) of sandy soils can be estimated from their basic gradation parameters. In this paper, we further suggest the applicable range of the estimation method is for soils with d10 > 0.02mm and Cu < 20, in which d10 is the grain diameter corresponding to 10% passing and Cu is the coefficient of uniformity (Cu=d60d10). The estimation method is also modified to consider the porosity variation effect. Then the proposed method is applied to predict unsaturated hydraulic conductivity properties of different sandy soils and also compared with laboratory and field test results. The comparison shows that the newly developed estimation method, which predicts the relative permeability of unsaturated sands from basic grain size parameters and porosity, generally has a fair agreement with measured data. It also indicates that the air-entry value is mainly relative to the mean grain size and porosity value change from the intrinsic value. The rate of permeability decline with suction is mainly associated with grain size polydispersity.


HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1106-1112 ◽  
Author(s):  
Paraskevi A. Londra

For effective irrigation and fertilization management, the knowledge of substrate hydraulic properties is essential. In this study, a steady-state laboratory method was used to determine simultaneously the water retention curve, θ(h), and unsaturated hydraulic conductivity as a function of volumetric water content, K(θ), and water pressure head, K(h), of five substrates used widely in horticulture. The substrates examined were pure peat, 75/25 peat/perlite, 50/50 peat/perlite, 50/50 coir/perlite, and pure perlite. The experimental retention curve results showed that in the case of peat and its mixtures with perlite, there is a hysteresis between drying and wetting branches of the retention curve. Whereas in the case of coir/perlite and perlite, the phenomenon of hysteresis was less pronounced. The increase of perlite proportion in the peat/perlite mixtures led to a decrease of total porosity and water-holding capacity and an increase of air space. Study of the K(θ) and K(h) experimental data showed that the hysteresis phenomenon of K(θ) was negligible compared with the K(h) data for all substrates examined. Within a narrow range of water pressure head (0 to –70 cm H2O) that occurs between two successive irrigations, a sharp decrease of the unsaturated hydraulic conductivity was observed. The comparison of the K(θ) experimental data between the peat-based substrate mixtures and the coir-based substrate mixture showed that for water contents lower than 0.40 m3·m−3, the hydraulic conductivity of the 50/50 coir/perlite mixture was greater. The comparison between experimental water retention curves and predictions using Brooks-Corey and van Genuchten models showed a high correlation (0.992 ≤ R2 ≤ 1) for both models for all substrates examined. On the other hand, in the case of unsaturated hydraulic conductivity, the comparison showed a relatively good correlation (0.951 ≤ R2 ≤ 0.981) for the van Genuchten-Mualem model for all substrates used except perlite and a significant deviation (0.436 ≤ R2 ≤ 0.872) for the Brooks-Corey model for all substrates used.


Soil Research ◽  
2001 ◽  
Vol 39 (4) ◽  
pp. 823 ◽  
Author(s):  
N. J. McKenzie ◽  
H. P. Cresswell ◽  
H. Rath ◽  
D. Jacquier

We investigated differences between constant flux and constant potential methods for determining unsaturated hydraulic conductivity in the laboratory. A cheap and robust method was required. The constant flux drip infiltrometer has been used with large intact cores on a wide range of Australian soils. However, the method can be simplified by replacing the drip infiltrometer with a constant potential tension infiltrometer (disc permeameter). We conducted a series of measurements using 9 soil cores to determine whether the measured hydraulic conductivity differed with each method at matric potentials of –10, –20, or –50 mm. Hysteresis effects were also examined because tension infiltrometer measurements are usually made on the adsorption curve of the hydraulic conductivity and matric potential [K(Ψ)] relationship. Drip infiltrometer measurements are often made on the desorption curve. The reproducibility of measurements on a single core was also examined. A large decline in K(Ψ ) was observed on some cores with repeated measurements and this effect was larger than differences between the methods. In the absence of evidence of slaking or dispersion, the suspected cause of the decline in K(Ψ) was clogging of pores from accumulation of microbial biomass and their by-products. The results support the view that K(Ψ) in some soils is a dynamic property. There were consistent differences between the constant flux and constant potential methods on those soil cores not exhibiting a large decline in K(Ψ) (the others were omitted from the method comparison). The tension infiltrometer method indicated greater hydraulic conductivity in soils with well-developed macrostructure when matric potential was greater than –50 mm. Hysteresis effects were significant with both methods and measurements made on desorption and adsorption curves are not considered comparable. Overall, we concluded that the tension infiltrometer method was more suited than the drip method for routine processing of large numbers of samples at low cost.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Guoping Jiang ◽  
Wei Shi ◽  
Lili Huang

A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model.


1970 ◽  
Vol 50 (3) ◽  
pp. 431-437 ◽  
Author(s):  
C. F. SHAYKEWICH

Studies showed that sample disturbance influenced water retention, lower limit of available water and unsaturated hydraulic conductivity. Significant differences in water retention due to sample disturbance occurred more frequently at low than at high suction. Results showed that sample disturbance may influence unsaturated hydraulic conductivity by changing area of water flow and/or tortuosity. A modified Millington and Quirk method did not adequately predict measured hydraulic conductivity, in either disturbed or undisturbed soils. In view of theoretical objections to extension of capillary theory to the dry end of the available water range, and the relative ease of direct measurements, it is suggested that direct measurement is the only reliable procedure available.


HortScience ◽  
2011 ◽  
Vol 46 (10) ◽  
pp. 1394-1399 ◽  
Author(s):  
Patrice Cannavo ◽  
Houda Hafdhi ◽  
Jean-Charles Michel

The impact of root growth on the hydraulic properties of peat substrate was investigated under optimal water retention, i.e., at a constant water potential of –1 kPa. ‘New Guinea’ impatiens was grown in 1.1-L cylindrical containers for 196 d in a greenhouse under controlled climate and fertilization conditions. Water retention and hydraulic conductivity curves, root biomass and volume, and shoot weight were measured. Results indicated a maximal root volumetric content of 0.065 m3·m−3 that was as high as the peat content in containers (0.068 m3·m−3). From Day 0 to Day 196, the total porosity of the growing media decreased from 0.931 m3·m−3 to 0.874 m3·m−3. Moreover, considering the water-holding capacity at a water potential of –1 kPa, it increased from 0.58 to 0.75 m3·m−3 (i.e., by 29.3%) without changes in water availability but with a large decrease in air-filled porosity from 0.35 to 0.14 m3·m−3. The unsaturated hydraulic conductivity K(θ) decreased as a result of root growth. Root growth also modified pore size distribution and pore structure. Hydraulic conductivity curves indicated a better pore connectivity reflected by a decrease in tortuosity.


Sign in / Sign up

Export Citation Format

Share Document