scholarly journals Research on a novel magnetic tilt sensor designed using Hall elements and ferrofluid

2019 ◽  
Vol 70 (5) ◽  
pp. 406-411
Author(s):  
Yavuz Öztürk ◽  
Ismail Yariçi

Abstract In this study, a simple, adjustable, bidirectional tilt sensor was designed using a pair of linear Hall effect sensors and magnets. Theoretical analysis and experimental results of the sensor system were presented. The working principle of the designed sensor is based on sensing the magnetic field of a mobile magnet which displaces with respect to the tilt angle. Two magnet sets were placed at the two ends of the system to apply repulsive restoring forces on the mobile magnet. The mobile magnet was coated with a light hydrocarbon based ferrofluid as a lubricant to reduce friction. Fixed Hall effect sensors were placed face to face at the two sides of the mobile magnet to monitor the magnetic field of the mobile magnet. It was shown that both experimentally and theoretically, it is possible to measure the approximate tilt angle linearly and quadratically by calculating the sum and difference of the Hall sensor voltages for the relatively small movements of the mobile magnet. Moreover, the system was also examined for the different sets of side magnets. For three different side magnet configurations, approximately 0.7, 1.1 and 1.68 V/rad sensitivity values were observed in the linear range.

2017 ◽  
Vol 66 (3) ◽  
pp. 625-630 ◽  
Author(s):  
Michał Nowicki ◽  
Maciej Kachniarz ◽  
Roman Szewczyk

AbstractThe paper presents a special measurement system for investigation of temperature influence on the indication of commercially available sensors of the magnetic field. Utilizing the developed system, several magnetoresistive and Hall-effect sensors were investigated within the temperature range from −30°C to 70°C. The obtained results indicate that sensitivity of most of the investigated sensors is unaffected, except the basic magnetoresistive device. However, Hall-effect sensors exhibit considerable temperature drift, regardless of the manufacturer.


Author(s):  
Vladislav Sevostianov

The paper presents the concept of self-diagnosing smart bolts and its experimental validation. In the present research such bolts are designed, built, and experimentally tested. As a key element of the design, wires of Galfenol (alloy of iron and gallium) are used. This material shows magnetostrictive properties, and, at the same time, is sufficiently ductile to follow typical deformation of rock bolts, and is economically affordable. Two types of Galfenol were used: Ga10Fe90 and Ga17Fe83. The wires have been installed in bolts using two designs — in a drilled central hole or in a cut along the side — and the bolts were tested for generation of the magnetic field under three-point bending loading. To measure the magnetic field in the process of deformation, a magnetometer that utilizes the GMR effect was designed, built, and compared with one utilizing the Hall effect. It is shown that (1) magnetic field generated by deformation of the smart bolts at the stress level of plastic deformation is sufficient to be noticed by the proposed magnetometer; however, the magnetometer using Hall effect is insufficient; (2) Ga10Fe90 produces higher magnetic fields than Ga17Fe83; (3) the magnetic field in plastically bended bolts is relatively stable with time.


The distortion of the lines of flow of an electric current in a thin metal plate by the action of a magnetic field was discovered in 1879. Hall attributed this to the action of the magnetic field on the molecular currents in the metal film, which were deflected to one side or the other and accompanied by a corresponding twist of the equipotential lines. This explanation did not pass without criticism, and another theory of the effect found by Hall was published in 1884. In that paper the author seeks to explain the effect by assuming a combination of certain mechanical strains and Peltier effects, a thermo-electric current being set up between the strained and the unstrained portions. The effect of such strain was to produce a reverse effect in some metals, and these were precisely the metals for which the Hall effect was found to reverse. Aluminium was the only exception. In other respects, however, as shown by Hall in a later paper, Bidwell's theory did not stand the test of experiment, and the results lend no support to his theory, while they are in complete accordance withe the explanation that the molecular currents are disturbed by the action of the magnetic field. On the electron theory of metallic conduction, the mechanism of the Hall effect is more obvious, but at present no satisfactory explanation of the reversal found in some metals is known. Further experiments have made it clear that there is a real deflection of the elementary currents, due to the application of the magnetic field, independent of any effect due to strain.


Quantum 20/20 ◽  
2019 ◽  
pp. 303-322
Author(s):  
Ian R. Kenyon

It is explained how plateaux are seen in the Hall conductance of two dimensional electron gases, at cryogenic temperatures, when the magnetic field is scanned from zero to ~10T. On a Hall plateau σ‎xy = ne 2/h, where n is integral, while the longitudinal conductance vanishes. This is the integral quantum Hall effect. Free electrons in such devices are shown to occupy quantized Landau levels, analogous to classical cyclotron orbits. The stability of the IQHE is shown to be associated with a mobility gap rather than an energy gap. The analysis showing the topological origin of the IQHE is reproduced. Next the fractional QHE is described: Laughlin’s explanation in terms of an IQHE of quasiparticles is presented. In the absence of any magnetic field, the quantum spin Hall effect is observed, and described here. Time reversal invariance and Kramer pairs are seen to be underlying requirements. It’s topological origin is outlined.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1673
Author(s):  
Ching-Ming Lai ◽  
Jean-Fu Kiang

The magnetospheric responses to solar wind of Mercury, Earth, Jupiter and Uranus are compared via magnetohydrodynamic (MHD) simulations. The tilt angle of each planetary field and the polarity of solar wind are also considered. Magnetic reconnection is illustrated and explicated with the interaction between the magnetic field distributions of the solar wind and the magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document