scholarly journals Design and control of permanent magnet assisted synchronous reluctance motor with copper loss minimization using MTPA

2020 ◽  
Vol 71 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Songklod Sriprang ◽  
Babak Nahid-Mobarakeh ◽  
Noureddine Takorabet ◽  
Serge Pierfederici ◽  
Poom Kumam ◽  
...  

AbstractIt is necessary to find the suitable d - and q -axis reference currents to control PMA-SynRM motors with high efficiency. This paper presents the maximum torque per ampere (MTPA) to minimize the copper losses of the system and utilizes the field weakening control to operate above the rated speed of the PMA-SynRM. The copper losses equation and electromagnetic torque are used to optimize the d - and q -axis current references. A small-scale 1 kW prototype PMA-SynRM was designed and manufactured to test and examine the proposed control in the laboratory. The proposed algorithm was digitally carried out using the MicroLab Box dSPACE. The simulation results show that the copper losses of the machine with the MTPA algorithm are lower than those without the MTPA algorithm. The PMA-SynRM operates above the base speed of ~ 70 % in the constant power region by mean of field weakening control.

2021 ◽  
Vol 1 (4) ◽  
pp. 416-427
Author(s):  
Yasmine Ihcene Nadjai ◽  
Hafiz Ahmed ◽  
Noureddine Takorabet ◽  
Peyman Haghgooei

In recent times, permanent magnet assisted synchronous reluctance motors (PMaSRM) have been considered as suitable traction motors for electric vehicle applications. In this type of machine, where the share of reluctance torque is more significant than the excitation torque, it is more appropriate to use a control strategy that can fully utilize the reluctance torque. This paper deals with a new structure of permanent magnet-assisted synchronous reluctance motors that was designed and manufactured in a previous study. This paper suggests applying, in a first study, a constant parameter maximum torque per ampere (MTPA) strategy to make a contribution towards the control of such structure that is becoming increasingly attractive in the field of electric transportation. This method is usually used to control interior permanent magnet synchronous motors to minimize the copper losses of the system. Before implementing and simulating this method, the mathematical models of the suggested motor and the inverter are given. An experimental study is conducted on a small-scale 1 kW prototype PMaSRM using a MicrolabBox Dspace to test and examine the proposed control. Simulation and experimental results are presented in this article in order to verify the validity of the developed control strategy.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 530
Author(s):  
Maria Dems ◽  
Krzysztof Komeza ◽  
Jacek Szulakowski ◽  
Witold Kubiak

Speed-controlled induction motors have the most significant potential for energy savings. The greatest problems with obtaining high efficiency occur in motors with a wide range of rotational speed regulation, as in the motors for driving industrial washing machines under consideration. While for the highest speeds, the dominant phenomenon is at field weakening. The problem is obtaining the optimal size of the magnetic flux for low rotation speed to prevent excessive saturation increasing current, and reduction of efficiency. This problem is usually solved by selecting the appropriate control for an already built machine. The authors propose a combination of activities when designing the motor structure with the selection of proper control, which allows for high efficiency. Since the drive does not require precise speed control or obtaining the required dynamics, it was possible to use an inexpensive control in an open loop, avoiding the cost of transmitters. Furthermore, the number of design parameters that are subject to change is significantly limited by technological factors and the available space in the washing machine. Proper parameter selection was made using a peripheral method assisted by field-circuit simulations. The proposed approach can be used in designing structures and selecting motors controls for other applications.


2007 ◽  
Vol 158 (8) ◽  
pp. 235-242 ◽  
Author(s):  
Hans Rudolf Heinimann

The term «precision forestry» was first introduced and discussed at a conference in 2001. The aims of this paper are to explore the scientific roots of the precision concept, define «precision forestry», and sketch the challenges that the implementation of this new concept may present to practitioners, educators, and researchers. The term «precision» does not mean accuracy on a small scale, but instead refers to the concurrent coordination and control of processes at spatial scales between 1 m and 100 km. Precision strives for an automatic control of processes. Precision land use differs from precision engineering by the requirements of gathering,storing and managing spatio-temporal variability of site and vegetation parameters. Practitioners will be facing the challenge of designing holistic, standardized business processes that are valid for whole networks of firms,and that follow available standards (e.g., SCOR, WoodX). There is a need to educate and train forestry professionals in the areas of business process re-engineering, computer supported management of business transactions,methods of remote sensing, sensor technology and control theory. Researchers will face the challenge of integrating plant physiology, soil physics and production sciences and solving the supply chain coordination problem (SCCP).


Author(s):  
Anthony Ryan Hatch ◽  
Julia T. Gordon ◽  
Sonya R. Sternlieb

The new artificial pancreas system includes a body-attached blood glucose sensor that tracks glucose levels, a worn insulin infusion pump that communicates with the sensor, and features new software that integrates the two systems. The artificial pancreas is purportedly revolutionary because of its closed-loop design, which means that the machine can give insulin without direct patient intervention. It can read a blood sugar and administer insulin based on an algorithm. But, the hardware for the corporate artificial pancreas is expensive and its software code is closed-access. Yet, well-educated, tech-savvy diabetics have been fashioning their own fully automated do-it-yourself (DIY) artificial pancreases for years, relying on small-scale manufacturing, open-source software, and inventive repurposing of corporate hardware. In this chapter, we trace the corporate and DIY artificial pancreases as they grapple with issues of design and accessibility in a content where not everyone can become a diabetic cyborg. The corporate artificial pancreas offers the cyborg low levels of agency and no ownership and control over his or her own data; it also requires access to health insurance in order to procure and use the technology. The DIY artificial pancreas offers patients a more robust of agency but also requires high levels of intellectual capital to hack the devices and make the system work safely. We argue that efforts to increase agency, radically democratize biotechnology, and expand information ownership in the DIY movement are characterized by ideologies and social inequalities that also define corporate pathways.


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Mohd Helmi Sani ◽  
Frank Baganz

At present, there are a number of commercial small scale shaken systems available on the market with instrumented controllable microbioreactors such as Micro–24 Microreactor System (Pall Corporation, Port Washington, NY) and M2P Biolector, (M2P Labs GmbH, Aachen, Germany). The Micro–24 system is basically an orbital shaken 24–well plate that operates at working volume 3 – 7 mL with 24 independent reactors (deep wells, shaken and sparged) running simultaneously. Each reactor is designed as single use reactor that has the ability to continuously monitor and control the pH, DO and temperature. The reactor aeration is supplied by sparging air from gas feeds that can be controlled individually. Furthermore, pH can be controlled by gas sparging using either dilute ammonia or carbon dioxide directly into the culture medium through a membrane at the bottom of each reactor. Chen et al., (2009) evaluated the Micro–24 system for the mammalian cell culture process development and found the Micro–24 system is suitable as scaledown tool for cell culture application. The result showed that intra-well reproducibility, cell growth, metabolites profiles and protein titres were scalable with 2 L bioreactors.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


2015 ◽  
Vol 785 ◽  
pp. 576-580 ◽  
Author(s):  
Liaw Geok Pheng ◽  
Rosnani Affandi ◽  
Mohd Ruddin Ab Ghani ◽  
Chin Kim Gan ◽  
Jano Zanariah

Solar energy is one of the more attractive renewable energy sources that can be used as an input energy source for heat engines. In fact, any heat energy sources can be used with the Stirling engine. Stirling engines are mechanical devices working theoretically on the Stirling cycle, or its modifications, in which compressible fluids, such as air, hydrogen, helium, nitrogen or even vapors, are used as working fluids. When comparing with the internal combustion engine, the Stirling engine offers possibility for having high efficiency engine with less exhaust emissions. However, this paper analyzes the basic background of Stirling engine and reviews its existing literature pertaining to dynamic model and control system for parabolic dish-stirling (PD) system.


Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


Sign in / Sign up

Export Citation Format

Share Document