scholarly journals Modelling of Extreme Hydrological Events on a Tisza River Basin Pilot Area, Hungary

2018 ◽  
Vol 11 (3-4) ◽  
pp. 57-66
Author(s):  
Dávid Béla Vizi ◽  
János Fehér ◽  
Attila Lovas ◽  
Sándor Kovács

Abstract Climate change takes more and more challenges to the water management. Future predictions show that the possibility of extreme floods and drought events are increasing, thus an additional task of the water management can be the fulfilment of the increasing water demands. These new extreme hydrological situations need to be properly handled in water management. The paper presents the first modelling results of the JOINTISZA project carried out on a selected sub-basin of the Tisza River, which is endangered by hydrological extremes. Our aim was to demonstrate the applicability of a one-dimensional hydrodynamic model to study the effects of the climate change. Future hydrological trends were introduced in the river basin and it was assessed how the results of climate models can be used for further hydrodynamic modelling. To address challenges of climate change and supply the stakeholders with an adequate amount of water, proper operation of the reservoir and the irrigation canals are needed. The use of hydrological modelling can be helpful to adequately distribute water resources.

2020 ◽  
Vol 186 ◽  
pp. 109544 ◽  
Author(s):  
Thundorn Okwala ◽  
Sangam Shrestha ◽  
Suwas Ghimire ◽  
S. Mohanasundaram ◽  
Avishek Datta

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2021 ◽  
Author(s):  
Selina Meier ◽  
Randy Munoz ◽  
Christian Huggel

<p>Water scarcity is increasingly becoming a problem in many regions of the world. On the one hand, this can be attributed to changes in precipitation conditions due to climate change. On the other hand, this is also due to population growth and changes in consumer behaviour. In this study, an analysis is carried out for the highly glaciated Vilcanota River catchment (9808 km<sup>2</sup> – 1.2% glacier area) in the Cusco region (Peru). Possible climatic and socioeconomic scenarios up to 2050 were developed including the interests from different water sectors, i.e. agriculture, domestic and energy.</p><p>The analysis consists of the hydrological simulation at a monthly time step from September 2043 to August 2050 using a simple glacio-hydrological model. For historic conditions (1990 to 2006) a combination of gridded data (PISCO precipitation) and weather stations was used. Future scenario simulations were based on three different climate models for both RCP 2.6 and 8.5. Different glacier outlines were used to simulate changes in glacier surface through the time for both historic (from satellite data) and future (from existing literature) scenarios. Furthermore, future water demand simulations were based on the SSP1 and SSP3 scenarios.</p><p>Results from all scenarios suggest an average monthly runoff of about 130 m<sup>3</sup>/s for the Vilcanota catchment between 2043 and 2050. This represents a change of about +5% compared to the historical monthly runoff of about 123 m<sup>3</sup>/s. The reason for the increase in runoff is related to the precipitation data from the selected climate models. However, an average monthly deficit of up to 50 m<sup>3</sup>/s was estimated between April and November with a peak in September. The seasonal deficit is related to the seasonal change in precipitation, while the water demand seems to have a less important influence.</p><p>Due to the great uncertainty of the modelling and changes in the socioeconomic situation, the data should be continuously updated. In order to construct a locally sustainable water management system, the modelling needs to be further downscaled to the different subcatchments in the Vilcanota catchment. To address the projected water deficit, a new dam could partially compensate for the decreasing storage capacity of the melting glaciers. However, the construction of the dam could meet resistance from the local population if they cannot be promised and communicated multiple uses of the new dam. Sustainable water management requires the cooperation of all stakeholders and all stakeholders should be able to benefit from it so that they will support future projects.</p>


2015 ◽  
Vol 19 (3) ◽  
pp. 1385-1399 ◽  
Author(s):  
C. H. Wu ◽  
G. R. Huang ◽  
H. J. Yu

Abstract. The occurrence of climate warming is unequivocal, and is expected to be experienced through increases in the magnitude and frequency of extreme events, including flooding. This paper presents an analysis of the implications of climate change on the future flood hazard in the Beijiang River basin in South China, using a variable infiltration capacity (VIC) model. Uncertainty is considered by employing five global climate models (GCMs), three emission scenarios (representative concentration pathway (RCP) 2.6, RCP4.5, and RCP8.5), 10 downscaling simulations for each emission scenario, and two stages of future periods (2020–2050, 2050–2080). Credibility of the projected changes in floods is described using an uncertainty expression approach, as recommended by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). The results suggest that the VIC model shows a good performance in simulating extreme floods, with a daily runoff Nash–Sutcliffe efficiency coefficient (NSE) of 0.91. The GCMs and emission scenarios are a large source of uncertainty in predictions of future floods over the study region, although the overall uncertainty range for changes in historical extreme precipitation and flood magnitudes are well represented by the five GCMs. During the periods 2020–2050 and 2050–2080, annual maximum 1-day discharges (AMX1d) and annual maximum 7-day flood volumes (AMX7fv) are expected to show very similar trends, with the largest possibility of increasing trends occurring under the RCP2.6 scenario, and the smallest possibility of increasing trends under the RCP4.5 scenario. The projected ranges of AMX1d and AMX7fv show relatively large variability under different future scenarios in the five GCMs, but most project an increase during the two future periods (relative to the baseline period 1970–2000).


2020 ◽  
Vol 24 (6) ◽  
pp. 3251-3269 ◽  
Author(s):  
Chao Gao ◽  
Martijn J. Booij ◽  
Yue-Ping Xu

Abstract. Projections of streamflow, particularly of extreme flows under climate change, are essential for future water resources management and the development of adaptation strategies to floods and droughts. However, these projections are subject to uncertainties originating from different sources. In this study, we explored the possible changes in future streamflow, particularly for high and low flows, under climate change in the Qu River basin, eastern China. ANOVA (analysis of variance) was employed to quantify the contribution of different uncertainty sources from RCPs (representative concentration pathways), GCMs (global climate models) and internal climate variability, using an ensemble of 4 RCP scenarios, 9 GCMs and 1000 simulated realizations of each model–scenario combination by SDRM-MCREM (a stochastic daily rainfall model coupling a Markov chain model with a rainfall event model). The results show that annual mean flow and high flows are projected to increase and that low flows will probably decrease in 2041–2070 (2050s) and 2071–2100 (2080s) relative to the historical period of 1971–2000, suggesting a higher risk of floods and droughts in the future in the Qu River basin, especially for the late 21st century. Uncertainty in mean flows is mostly attributed to GCM uncertainty. For high flows and low flows, internal climate variability and GCM uncertainty are two major uncertainty sources for the 2050s and 2080s, while for the 2080s, the effect of RCP uncertainty becomes more pronounced, particularly for low flows. The findings in this study can help water managers to become more knowledgeable about and get a better understanding of streamflow projections and support decision making regarding adaptations to a changing climate under uncertainty in the Qu River basin.


2018 ◽  
Vol 10 (4) ◽  
pp. 759-781 ◽  
Author(s):  
Hadush K. Meresa ◽  
Mulusew T. Gatachew

Abstract This paper aims to study climate change impact on the hydrological extremes and projected precipitation extremes in far future (2071–2100) period in the Upper Blue Nile River basin (UBNRB). The changes in precipitation extremes were derived from the most recent AFROCORDEX climate data base projection scenarios compared to the reference period (1971–2000). The climate change impacts on the hydrological extremes were evaluated using three conceptual hydrological models: GR4 J, HBV, and HMETS; and two objective functions: NSE and LogNSE. These hydrological models are calibrated and validated in the periods 1971–2000 and 2001–2010, respectively. The results indicate that the wet/dry spell will significantly decrease/increase due to climate change in some sites of the region, while in others, there is increase/decrease in wet/dry spell but not significantly, respectively. The extreme river flow will be less attenuated and more variable in terms of magnitude, and more irregular in terms of seasonal occurrence than at present. Low flows are projected to increase most prominently for lowland sites, due to the combined effects of projected decreases in Belg and Bega precipitation, and projected increases in evapotranspiration that will reduce residual soil moisture in Bega and Belg seasons.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2130 ◽  
Author(s):  
Zhu ◽  
Zhang ◽  
Wu ◽  
Qi ◽  
Fu ◽  
...  

This paper assesses the uncertainties in the projected future runoff resulting from climate change and downscaling methods in the Biliu River basin (Liaoning province, Northeast China). One widely used hydrological model SWAT, 11 Global Climate Models (GCMs), two statistical downscaling methods, four dynamical downscaling datasets, and two Representative Concentration Pathways (RCP4.5 and RCP8.5) are applied to construct 22 scenarios to project runoff. Hydrology variables in historical and future periods are compared to investigate their variations, and the uncertainties associated with climate change and downscaling methods are also analyzed. The results show that future temperatures will increase under all scenarios and will increase more under RCP8.5 than RCP4.5, while future precipitation will increase under 16 scenarios. Future runoff tends to decrease under 13 out of the 22 scenarios. We also found that the mean runoff changes ranging from −38.38% to 33.98%. Future monthly runoff increases in May, June, September, and October and decreases in all the other months. Different downscaling methods have little impact on the lower envelope of runoff, and they mainly impact the upper envelope of the runoff. The impact of climate change can be regarded as the main source of the runoff uncertainty during the flood period (from May to September), while the impact of downscaling methods can be regarded as the main source during the non-flood season (from October to April). This study separated the uncertainty impact of different factors, and the results could provide very important information for water resource management.


Author(s):  
Cristina Andrade ◽  
Joana Contente ◽  
João Andrade Santos

The assessment of aridity conditions is a key factor for water management and the implementation of mitigation and adaptation policies in agroforestry systems. Towards this aim three aridity indices were computed for the Iberian Peninsula (IP): the De Martonne Index (DMI), the Pinna Combinative Index (PCI), and the Erinç Aridity Index (EAI). These three indices were first computed for the baseline period 1961‒1990, using a gridded observational data (E-OBS), and, subsequently, for the periods 2011‒2040 (short-range) and 2041‒2070 (medium-range) using an ensemble of six Regional Climate Models (RCMs) experiments generated by the EURO-CORDEX project. Two Representative Concentration Pathways (RCPs) were analyzed, an intermediate anthropogenic radiative forcing scenario (RCP4.5) and a fossil-intensive emission scenario (RCP8.5). Overall, the three indices disclose a strengthening of aridity and dry conditions in central and southern Iberia until 2070, mainly under RCP8.5. Strong(weak) statistically significant correlations were found between these indices and the total mean precipitation (mean temperature) along with projected significant decreasing(increasing) trends for precipitation(temperature). The prevalence of years with arid conditions (above 70% for 2041‒2070 under both RCPs) are projected to have major impacts in some regions, such as southern Portugal, Extremadura, Castilla-La Mancha, Comunidad de Madrid, Andalucía, Región de Murcia, Comunidad Valenciana, and certain regions within the Aragón province. The projected increase in both the intensity and persistence of aridity conditions in a broader southern half of Iberia will exacerbate the exposure and vulnerability of this region to climate change, while the risk of multi-level desertification should be thoroughly integrated into regional and national water management and planning.


2021 ◽  
Author(s):  
Moctar Dembélé ◽  
Mathieu Vrac ◽  
Natalie Ceperley ◽  
Sander J. Zwart ◽  
Josh Larsen ◽  
...  

Abstract. A comprehensive evaluation of the impacts of climate change on water resources of the West Africa Volta River basin is conducted in this study, as the region is expected to be hardest hit by global warming. A large ensemble of twelve general circulation models (GCM) from CMIP5 that are dynamically downscaled by five regional climate models (RCM) from CORDEX-Africa is used. In total, 43 RCM-GCM combinations are considered under three representative concentration pathways (RCP2.6, RCP4.5 and RCP8.5). The reliability of each of the climate datasets is first evaluated with satellite and reanalysis reference datasets. Subsequently, the Rank Resampling for Distributions and Dependences (R2D2) multivariate bias correction method is applied to the climate datasets. The corrected simulations are then used as input to the fully distributed mesoscale Hydrologic Model (mHM) for hydrological projections over the twenty-first century (1991–2100). Results reveal contrasting changes in the seasonality of rainfall depending on the selected greenhouse gas emission scenarios and the future projection periods. Although air temperature and potential evaporation increase under all RCPs, an increase in the magnitude of all hydrological variables (actual evaporation, total runoff, groundwater recharge, soil moisture and terrestrial water storage) is only projected under RCP8.5. High and low flow analysis suggests an increased flood risk under RCP8.5, particularly in the Black Volta, while hydrological droughts would be recurrent under RCP2.6 and RCP4.5, particularly in the White Volta. Disparities are observed in the spatial patterns of hydroclimatic variables across climatic zones, with higher warming in the Sahelian zone. Therefore, climate change would have severe implications for future water availability with concerns for rain-fed agriculture, thereby weakening the water-energy-food security nexus and amplifying the vulnerability of the local population. The variability between climate models highlights uncertainties in the projections and indicates a need to better represent complex climate features in regional models. These findings could serve as a guideline for both the scientific community to improve climate change projections and for decision makers to elaborate adaptation and mitigation strategies to cope with the consequences of climate change and strengthen regional socio-economic development.


Sign in / Sign up

Export Citation Format

Share Document