scholarly journals Infestation of Polish Agricultural Soils by Plasmodiophora Brassicae Along The Polish-Ukrainian Border

2014 ◽  
Vol 54 (3) ◽  
pp. 238-241 ◽  
Author(s):  
Małgorzata Jędryczka ◽  
Idalia Kasprzyk ◽  
Marek Korbas ◽  
Ewa Jajor ◽  
Joanna Kaczmarek

Abstract There has been a rapid, worldwide increase in oilseed rape production that has resulted in enormous intensification of oilseed rape cultivation, leading to tight rotations. This in turn, has caused an accumulation of pests as well as foliar and soil-borne diseases. Recently, clubroot has become one of the biggest concerns of oilseed rape growers. Clubroot is caused by the soil-borne protist Plasmodiophora brassicae Woronin. The pathogen may be present in groundwater, lakes, and irrigation water used in sprinkling systems. It can be easily transmitted from one field to another not only by water, but also by soil particles and dust transmitted by wind and on machinery. The aim of our overall study was to check for P. brassicae infestation of Polish agricultural soils. This paper presents the 2012 results of a study performed along the Polish-Ukrainian border in two provinces: Lublin (Lubelskie Voivodeship) and the Carpathian Foothills (Podkarpackie Voivodeship), in south-east Poland. Monitoring was done in 11 counties, including nine rural and two municipal ones. In total, 40 samples were collected, out of which 36 were collected from fields located in rural areas and four from municipal areas, with two per municipal region. Each sample was collected at 8-10 sites per field, using a soil auger. The biotest to detect the presence of P. brassicae was done under greenhouse conditions using seedlings of the susceptible Brassicas: B. rapa ssp. pekinensis and the Polish variety of oilseed rape B. napus cv. Monolit. Susceptible plants grown in heavily infested soils produced galls on their roots. A county was regarded as free from the pathogen, if none of the bait plants became infected. The pathogen was found in three out of 40 fields monitored (7.5%) in the Carpathian Foothill region. The fields were located in two rural counties. The pathogen was not found in Lublin province, and was also not detected in any of the municipal counties. The detection with a biotest was fully confirmed by PCR-based molecular detection of P. brassicae DNA in soil samples.

2021 ◽  
Author(s):  
Vaneet Kumar ◽  
Sandip Singh ◽  
Avinash Nagpal

Abstract Soil, a connecting link between biotic and abiotic components of terrestrial ecosystem, receives different kinds of pollutants through various point and nonpoint sources. Among different sources of soil pollution, contaminated irrigation water is one of the most prominent sources affecting soils throughout the globe. The irrigation water (both surface and groundwater) are increasingly getting polluted with contaminants such as metal(loid)s due to various anthropogenic activities. The present study was conducted to analyze metal(loid) contents in agricultural soil samples (N = 24) collected from fields along the banks of rivers Beas and Sutlej flowing through Punjab state of India, using Wavelength Dispersive X-Ray Florescent (WDXRF) Spectroscopy. The soil samples were also analysed for their genotoxic potential using Allium cepa root chromosomal aberration assay. The rivers Beas and Sutlej are contaminated with municipal and industrial effluents in different parts of Punjab. The soil samples analyzed were found to have higher contents of Arsenic, Cobalt and Chromium when compared with reference values given by various international agencies. Pollution assessment using different indices like Index of geo-accumulation, Enrichment factor and Contamination factor revealed that the soil samples were highly polluted with cobalt and arsenic. The Allium cepa assay revealed that maximum genotoxicity was found in soil samples having higher contents of As and Co. Pearson’s correlation analysis revealed strong positive correlation between the different metal(loid)s which indicated common sources of these metal(loid)s. Therefore, efforts must be taken to reduce the levels of these metal(loid)s in these agricultural soils.


Weed Science ◽  
1976 ◽  
Vol 24 (1) ◽  
pp. 47-50 ◽  
Author(s):  
R. D. Comes ◽  
V. F. Bruns ◽  
A. D. Kelley

Neither glyphosate [N-(phosphonomethyl)glycine] nor the soil metabolite aminomethylphosphonic acid were detected in the first flow of water through two canals following application of glyphosate at 5.6 kg/ha to ditchbanks when the canals were dry. Soil samples collected the day before canals were filled (about 23 weeks after treatment) contained about 0.35 ppm glyphosate and 0.78 ppm aminomethylphosphonic acid in the 0 to 10-cm layer. When glyphosate was metered into the water at a rate calculated to provide 150 ppb in the canal water at a single site on two flowing canals, about 70% of the glyphosate was accounted for 1.6 km downstream from the application site. Thereafter, the rate of disappearance diminished, and about 58% of the applied glyphosate was present at the end of the canals 8 or 14.4 km downstream from the introduction sites.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


2017 ◽  
Vol 92 ◽  
pp. 60-69 ◽  
Author(s):  
Veronika Řičařová ◽  
Jan Kazda ◽  
Petr Baranyk ◽  
Pavel Ryšánek

2014 ◽  
Vol 104 (5) ◽  
pp. 532-538 ◽  
Author(s):  
Becke Strehlow ◽  
Friederike de Mol ◽  
Christine Struck

The soilborne pathogen Plasmodiophora brassicae causes clubroot on Brassica crops, a common disease in many oilseed rape growing regions. Here, we investigate genetic diversity and geographic differentiation of P. brassicae populations from different regions in Germany. We compared three regions that differ in oilseed rape cropping history, oilseed rape acreage, and incidence of clubroot. These regions were either spatially separated or separated by the former inner German border. Plasmodiophora isolates were collected from 59 fields (29, 17, and 13 fields per region, respectively) and 174 amplified fragment length polymorphism (AFLP) markers were analyzed. Every field isolate showed a unique genotype pattern; that is, no genotype was shared among the regions and different fields. The mean gene diversity was 0.27, suggesting that P. brassicae is a genetically diverse species. The comparison of indexes (gene diversity, genotypic diversity, and linkage disequilibrium) between the regions does not support our hypotheses that cropping history, oilseed rape acreage, and incidence of clubroot affect these estimates. Principal component analysis (PCA), fixation index (FST), and generalized linear model (GLM) were suitable to specify regional differences. PCA revealed two clusters of isolates based on the geographic origin of the isolates and FST showed that these clusters were highly differentiated. Hypotheses about association of genotypes with different spatial scales were tested with GLM: the region, reflecting the cropping history, and the individual field had a significant effect on the AFLP pattern. We propose that individual field isolates represent a discrete population and that geographic differentiation results from low levels of gene flow due to the limited dispersal of this soilborne pathogen and from localized selection pressure as unifying force on the genotypes.


2009 ◽  
Vol 66 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Gustavo Souza Valladares ◽  
Otávio Antônio de Camargo ◽  
José Ruy Porto de Carvalho ◽  
Alessandra Maria Cia Silva

Agricultural management with chemicals may contaminate the soil with heavy metals. The objective of this study was to apply Principal Component Analysis and geoprocessing techniques to identify the origin of the metals Cu, Fe, Mn, Zn, Ni, Pb, Cr and Cd as potential contaminants of agricultural soils. The study was developed in an area of vineyard cultivation in the State of São Paulo, Brazil. Soil samples were collected and GPS located under different uses and coverings. The metal concentrations in the soils were determined using the DTPA method. The Cu and Zn content was considered high in most of the samples, and was larger in the areas cultivated with vineyards that had been under the application of fungicides for several decades. The concentrations of Cu and Zn were correlated. The geoprocessing techniques and the Principal Component Analysis confirmed the enrichment of the soil with Cu and Zn because of the use and management of the vineyards with chemicals in the preceding decades.


2005 ◽  
Vol 21 (1-2) ◽  
pp. 75-92 ◽  
Author(s):  
Samantha J Langley-Turnbaugh ◽  
Nancy R Gordon ◽  
Thomas Lambert

Maine currently has the second fastest growing asthma rate in the nation- 9.4% of the adult population has asthma and one out of eight children is affected. The factors behind this increase are poorly understood, but previous reports suggest that biologically soluble metal ions from particulate matter (PM10) may play a role in asthma episodes. In an effort to study this issue, we first identified geographic and temporal trends in Maine asthma hospitalizations. Clinical data show a strong fall peak in asthma admissions with weaker peaks in January and May, and a summer low in asthma admissions. Asthma admissions are also higher in the cities than in the rural areas in Maine. We then analysed PM10 collected by the Maine Department of Environmental Protection in three different Maine locations in the years 2000 and 2001, at times when clinical asthma data showed peaks and during the summer low period. We also collected soil samples in the same locations. The PM10 and soils were analysed for 10 metals by acid extraction to determine total metal content and then with cell culture medium, DMEM/F12+CCS growth medium, to determine metal biosolubility. Our results showed that Mn, Cu, Pb, As, V, Ni and Al were present in the Maine PM samples. V, Ni and Pb showed seasonal variation, while the others were relatively constant throughout the year. Pb and Al did not appear to be soluble in the biological medium. There was also variation from location to location with the urban area showing the highest concentrations for most metals. Aluminium was present in the highest concentration in soil samples, followed by Mn and V. Only Cu was biologically available in soils. We determined from M/Al ratios that most of the PM10 did not originate from local crustal material.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 23-33 ◽  
Author(s):  
S. Czarnecki ◽  
R.-A. Düring

Abstract. Essential and non-essential metals occur in soils as a result of weathering, industrial processes, fertilization, and atmospheric deposition. Badly adapted cultivation of agricultural soils (declining pH value, application of unsuitable fertilizers) can enhance the mobility of metals and thereby increase their concentrations in agricultural products. As the enrichment of metals in soils occurs over long time periods, monitoring of the long-term impact of fertilization is necessary to assess metal accumulation in agricultural soils. The main objective of this study was to test the effects of different mineral fertilizer variations on soil properties (pH, Corg, and cation exchange capacity (CEC)) and pseudo-total and mobile metal contents of soils after 14 years of fertilizer application and to determine residual effects of the fertilization 8 years after cessation of fertilizer treatment. Soil samples were taken from a field experiment which was carried out at four different locations (210, 260, 360, and 620 m above sea level) in Hesse, Germany. During the study, a significant decrease in soil pH and an evident increase in soil carbon content and cation exchange capacity with fertilization were determined. The CEC of the soils was closely related to their organic C contents. Moreover, pseudo- and mobile metal (Cd, Cu, Mn, Pb, Zn) contents in the soils increased due to application of 14 years of mineral fertilizer treatments (N, P, NP, and NPK) when compared to control plots. Eight years after termination of the fertilization in the soil samples taken from soil profiles of the fertilized plots (NPK) for monitoring the residual effects of the fertilizer application, a decrease of 82.6, 54.2, 48.5, 74.4, and 56.9% in pseudo-total Cd, Cu, Mn, Pb, and Zn contents, respectively, was determined.


Sign in / Sign up

Export Citation Format

Share Document