scholarly journals Age and Land Use as Factors Differentiating Hydrochemistry and Plant Cover of Astatic Ponds in Post-Agricultural Landscape

2014 ◽  
Vol 21 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Monika Mętrak ◽  
Paweł Pawlikowski ◽  
Małgorzata Suska-Malawska

Abstract Small, astatic ponds are important features of post-glacial landscape, which support heterogeneity and biodiversity of agricultural areas. In the presented research we explored differences in hydrochemistry and plant cover of 20 small ponds located in Northeastern Poland, characterized by diverse age and developed in differently managed areas. According to our research, though changes in water level are under direct influence of water balance in the catchment, to which belonged the ponds, their hydrochemistry seemed to be shaped by processes at the level lower than the catchment scale. Age of the ponds appeared to be an important factor influencing density and species composition of vegetation developed on the studied ponds.

2017 ◽  
Vol 36 (4) ◽  
pp. 339-351
Author(s):  
Matej Masný ◽  
Karol Weis ◽  
Martin Boltižiar

Abstract Agricultural land in many post-socialist countries passed through a similar scenario of eminent changes in the past decades. One of the important milestones was the process of collectivisation (in 1950−1970), transformation to market-oriented economy (after 1989) and the following integration into the European Union. These changes were often attended by the process of agricultural abandonment. This paper presents an approach to the evaluation of agricultural abandonment by analysis of land use change in chosen terrain attributes (slope levels and altitude levels) context. It studies the area of a northern part of the Poľana UNESCO (United Nations Educational, Scientific and Cultural Organization) Biosphere reserve that represents mountain agricultural landscape. All of the analyses were realised in GIS (geographic information systems), based on the orthophotos that represented the land use structure in 1949, 1986 and 2006. Dramatic decrease in real usage of agricultural areas attended by the process of secondary succession was observed especially in steep slopes and higher altitude levels. To quantify the changes, landscape metrics such as class area (CA), number of patches (NP) and mean patch size (MPS) were used. Changes in landscape classes had an influence on landscape diversity. It was expressed by decrease in Shannon‘s diversity index (SDI) and Shannon‘s evenness index (SEI).


2013 ◽  
Vol 10 (7) ◽  
pp. 4673-4690 ◽  
Author(s):  
J. Delgado-Balbuena ◽  
J. T. Arredondo ◽  
H. W. Loescher ◽  
E. Huber-Sannwald ◽  
G. Chavez-Aguilar ◽  
...  

Abstract. Changes in land use across the semiarid grasslands of northern Mexico have driven a decline of plant cover and alteration of plant species composition. A number of different plant communities have resulted from these changes. Their implications, however, on the carbon (C) cycle and regional carbon balance are still poorly understood. Here, we examined the effects of plant cover loss and changes in species composition on net ecosystem CO2 exchange (NEE) and their biotic and abiotic controls. NEE was measured in five representative plant community types within a semiarid grassland by temporarily enclosing the entire aboveground ecosystem using a chamber method (i.e., geodesic dome). Sites included an oat crop (crop), a moderately grazed grassland (moderate grazing), a 28 yr-old grazing exclosure (exclosure), an overgrazed site with low perennial grass cover (overgrazed), and an overgrazed site presenting shrub encroachment (shrub encroachment). For natural vegetation, rates of standardized daytime NEE for sites with a high plant cover (exclosure and moderate grazing) were similar (P > 0.05) as compared to sites with low plant cover (overgrazed and shrub encroachment). However, yearly total nighttime NEE (carbon loss) was more than double (P < 0.05) for sites with high plant cover compared to sites with low cover, resulting to slight C sinks for the low plant cover sites, and neutral or sources for the high plant cover sites as accounted by daytime and nighttime NEE annual balance. Differences in plant cover and its associated biomass defined the sensitivity to environmental controls. Thus, daytime NEE in low plant cover sites reached light compensation points at lower photosynthetic photon flux density than those from high plant cover sites. Differences in species composition did not influence NEE rates even though there were transient or permanent changes in C3 vs. C4 functional groups. Our results allowed the detection of the large variability and contribution of different plant communities to regional C balance in patchy landscapes. Identification of the role of landscape patches in the regional C balance as either sinks or sources may provide tools allowing land use management strategies that could favor C uptake in patchy landscapes.


2011 ◽  
Vol 7 ◽  
pp. 5-26 ◽  
Author(s):  
Anna Bomanowska ◽  
Marcin Kiedrzyński

The objective of this paper is to present the effects of general changes in land use in recent decades on plant cover structure in Poland. The paper is focused on spontaneous processes that occur in agricultural and forest areas being no longer under human pressure. Studies carried out in different geobotanical regions of Poland demonstrated that the directions and range of dynamic changes in plant cover are similar across the country. The formation of secondary forest phytocenoses, on the lands delivered from human activity is a common ecological process observed today in the agricultural landscape. In the dynamics of forest vegetation the basic process is regeneration after ceased use, and the introduction of legal protection.


2007 ◽  
Vol 38 (4-5) ◽  
pp. 317-331 ◽  
Author(s):  
G.A. Lindgren ◽  
S. Wrede ◽  
J. Seibert ◽  
M. Wallin

Models simulating nutrient transport at the catchment scale are frequently used for source apportionment and thereby for finding cost-efficient management strategies for water quality improvements. One typical modelling approach at the catchment scale is the use of leaching coefficients (mass per unit flow of water) to compute the nutrient input based on land-use information. In this study two different such model approaches, the lumped Fyrismodel and the distributed HBV-N-D model, were compared based on simulations for the River Fyris catchment in central Sweden. A major difference between the models were different assumptions of specific runoff variations between different land-use classes. These differences had a considerable effect on the computed source apportionment. The higher specific runoff from agricultural areas in the HBV-N-D model compared to the Fyrismodel resulted in a larger contribution of agricultural areas to the total nitrogen export. These results demonstrate the importance of the assumptions of the spatial variation of specific runoff on source apportionment HBV-N-D model estimations.


2011 ◽  
Vol 25 (3) ◽  
pp. 411-421 ◽  
Author(s):  
Daisuke Hayasaka ◽  
Munemitsu Akasaka ◽  
Daisaku Miyauchi ◽  
Taizo Uchida

Growth of vegetation in curbside cracks causes deterioration of asphalt and curbs, reducing road longevity and safety capabilities. Road managers spend a considerable amount of time and money on roadside vegetation management every year. The vegetation in curbside cracks in these study regions is managed approximately once a year by mowing and road sweeping using street-sweeper trucks. Nevertheless, ideal management practices of roadside vegetation have not yet been established partly due to insufficient knowledge of the ecological strategies of plants invading roadsides, especially curbside cracks. Although establishment of plants in the cracks might be restricted due to severe anthropogenic road disturbances, the cracks could be habitats for species with specific ecological traits. The objective of this study was to clarify the floristic and functional characteristics of roadside weeds, particularly species invading curbside cracks, to provide information for effective road management. The species composition of plants invading the cracks was surveyed along Route 3 (southern Japan) and Route 4 (eastern Japan) in different climatic zones, based on 108 floristic inventories. We compared species occurrence and composition to characterize the dominant ecomorphological traits of the species. In total, 163 species occurred in curbside cracks along both routes. Species composition of vegetation in curbside cracks was more variable between the routes than between land-use types. Of the 54 species, more than 5% occurred in all plots, and only three had differences in occurrence among land-use types. Ecomorphological trait composition patterns of the species were similar across land-use types. From these results, we found that regardless of differences in species composition among regions, climatic conditions, and surrounding land-use type, there were some dominant ecomorphological traits of roadside vegetation with plants in curbside cracks, such as ephemeral monophytes that are barochorous or anemochorous. By contrast, rhizomatous perennials, which cause greater deterioration of asphalt than ephemeral monophytes, were rare along the cracks. Although vegetation composition and structure generally depend on land-use types and disturbance regimes, linear landscape elements such as curbsides might be habitats for plants adapted to road disturbances. Roadside vegetation management, such as mowing and road sweeping once a year, seems sufficient to restrict establishment of rhizomatous perennials around Japan.


2014 ◽  
Vol 25 (3-4) ◽  
pp. 53-68
Author(s):  
I. V. Goncharenko ◽  
H. M. Holyk

Cenotic diversity and leading ecological factors of its floristic differentiation were studied on an example of two areas – Kyiv parks "Nivki" and "Teremki". It is shown that in megalopolis the Galeobdoloni-Carpinetum impatientosum parviflorae subassociation is formed under anthropogenic pressure on the typical ecotope of near-Dnieper hornbeam oak forests on fresh gray-forest soils. The degree of anthropogenic transformation of cenofloras can be estimated by the number of species of Robinietea and Galio-Urticetea classes, as well as neophytes and cultivars. Phytoindication for hemeroby index may be also used in calculation. We propose the modified index of biotic dispersion (normalized by alpha-diversity) for the estimation of ecophytocenotic range (beta-diversity) of releves series. We found that alpha-diversity initially increases (due to the invasion of antropophytes) at low level of antropogenic pressure, then it decreases (due to the loss of aboriginal species) secondarily with increasing of human impact. Also we found that beta-diversity (differential diversity) decreases, increasing homogeneity of plant cover, under the influence of anthropogenic factor. Vegetation classification was completed by a new original method of cluster analysis, designated as DRSA («distance-ranked sorting assembling»). The classification quality is suggested to be validated on the "seriation" diagram, which is а distance matrix between objects with gradient filling. Dark diagonal blocks confirm clusters’ density (intracluster compactness), uncolored off-diagonal blocks are evidence in favor of clusters’ isolation (intercluster distinctness). In addition, distinction of clusters (syntaxa) in ordination area suggests their independence. For phytoindication we propose to include only species with more than 10% constancy. Furthermore, for the description of syntaxonomic amplitude we suggest to use 25%-75% interquartile scope instead of mean and standard deviation. It is shown that comparative analysis of syntaxa for each ecofactor is convenient to carry out by using violin (bulb) plots. A new approach to the phytoindication of syntaxa, designated as R-phytoindication, was proposed for our study. In this case, the ecofactor values, calculated for individual releves, are not taken into account, however, the composition of cenoflora with species constancies is used that helps us to minimize for phytoindication the influence of non-typical species. We suggested a syntaxon’s amplitude to be described by more robust statistics: for the optimum of amplitude (central tendency) – by a median (instead of arithmetic mean), and for the range of tolerance – by an interquartile scope (instead of standard deviation). We assesses amplitudes of syntaxa by phytoindication method for moisture (Hd), acidity (Rc), soil nitrogen content (Nt), wetting variability (vHd), light regime (Lc), salt regime (Sl). We revealed no significant differences on these ecofactors among ecotopes of our syntaxa, that proved the variant syntaxonomic rank for all syntaxa. We found that the core of species composition of our phytocenoses consists of plants with moderate requirements for moisture, soil nitrogen, light and salt regime. We prove that the leading factor of syntaxonomic differentiation is hidden anthropogenic, which is not subject to direct measurement. But we detect that hidden factor of "human pressure" was correlated with phytoindication parameters (variables) that can be measured "directly" by species composition of plant communities. The most correlated factors were ecofactors of soil nitrogen, wetting variability, light regime and hemeroby. The last one is the most indicative empirically for the assessment of "human impact". We establish that there is a concept of «hemeroby of phytocenosis» (tolerance to human impact), which can be calculated approximately as the mean or the median of hemeroby scores of individual species which are present in it.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel T. L. Myers ◽  
Richard R. Rediske ◽  
James N. McNair ◽  
Aaron D. Parker ◽  
E. Wendy Ogilvie

Abstract Background Urban areas are often built along large rivers and surrounded by agricultural land. This may lead to small tributary streams that have agricultural headwaters and urbanized lower reaches. Our study objectives assessed are as follows: (1) landscape, geomorphic, and water quality variables that best explained variation in aquatic communities and their integrity in a stream system following this agricultural-to-urban land use gradient; (2) ways this land use gradient caused aquatic communities to differ from what would be expected for an idealized natural stream or other longitudinal gradients; and (3) whether the impacts of this land use gradient on aquatic communities would grow larger in a downstream direction through the agricultural and urban developments. Our study area was an impaired coldwater stream in Michigan, USA. Results Many factors structured the biological communities along the agricultural-to-urban land use gradient. Instream woody debris had the strongest relationship with EPT (Ephemeroptera, Plecoptera, and Trichoptera) abundance and richness and were most common in the lower, urbanized watershed. Fine streambed substrate had the strongest relationship with Diptera taxa and surface air breather macroinvertebrates and was dominant in agricultural headwaters. Fish community assemblage was influenced largely by stream flow and temperature regimes, while poor fish community integrity in lower urban reaches could be impacted by geomorphology and episodic urban pollution events. Scraping macroinvertebrates were most abundant in deforested, first-order agricultural headwaters, while EPT macroinvertebrate richness was the highest downstream of agricultural areas within the urban zone that had extensive forest buffers. Conclusion Environmental variables and aquatic communities would often not conform with what we would expect from an idealized natural stream. EPT richness improved downstream of agricultural areas. This shows promise for the recovery of aquatic systems using well-planned management in watersheds with this agricultural-to-urban land use pattern. Small patches of forest can be the key to conserving aquatic biodiversity in urbanized landscapes. These findings are valuable to an international audience of researchers and water resource managers who study stream systems following this common agricultural-to-urban land use gradient, the ecological communities of which may not conform with what is generally known about land use impacts to streams.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 240
Author(s):  
Alessandro Ferrarini ◽  
Marco Gustin ◽  
Claudio Celada

Biodiversity loss has multiple causes, but habitat degradation through land-use change is the predominant driver. We investigated the effectiveness of the Natura 2000 network in preserving the main wetlands of the two largest islands of the Mediterranean region, whose conservation is critical for many avian species at European and global level, in a 23-year period (1990–2012). In Sardinia, the surroundings of 22 wetlands were affected by an increase in artificial areas (+64 ha/year) and decrease in agricultural (−54 ha/year) and natural (−17 ha/year) ones. In Sicily, the surroundings of 16 wetlands were impacted by an increase in agricultural areas (+50 ha/year) and decrease in natural and semi-natural ones (−62 ha/year). Results show that the Natura 2000 policies were effective in preserving wetlands (no shrinkages detected in both regions), but their surroundings experienced intense processes of degradation and artificialization in all the sub-periods considered (1990–2000, 2000–2006, 2006–2012), whose effects are now threatening waterbirds and wetland integrity. The enlargement of the existing Natura 2000 sites, the creation of new ones and the speedup of the application of the rules of the Habitats and Birds Directives seem necessary to counteract the rapid land-use changes around these important stopover sites.


Sign in / Sign up

Export Citation Format

Share Document