scholarly journals Analysis of Powered Roof Support Operation Based on a Virtual Driver

2018 ◽  
Vol 1 (1) ◽  
pp. 415-421
Author(s):  
Dawid Szurgacz ◽  
Jarosław Brodny

Abstract The article presents the results of tests and analyses of control functions performed by a powered roof support which is the basic part of a powered longwall system. The research was based on an innovative registration and measurement system dedicated to this specific range of tests. The basic element of this system is a virtual driver. It is equipped with input and output systems to connect standard physical voltage signals. The tests were carried out on a prototype powered roof support type ZPR- 15/35-POz. The presented research methodology and obtained results are an element of new research methods developed for powered support based on virtual controllers. The applied solution generates less costs than the devices currently used, while its functionality is significantly greater. The system developed by the Authors supports innovative and, to a certain extent, intelligent IT solutions for testing control elements. This developed system is suitable to be applied in a wide range of research such as diagnosis of mining machinery control elements and other industries in the near future.

2018 ◽  
Vol 1 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Dawid Szurgacz ◽  
Horst Gondek

Abstract The article presents the methodology and results of tests of a prototype controller designed for the electrohydraulic control system of a powered roof support. This controller is the basic part of the developed, innovative control system. The tests were carried out on a custom-designed testing station, equipped with one section of a roof support. The aim of the research was to check the functionality and speed of the controller's response while working with the actual support section. The tested controller and the control system has a modular structure, which greatly facilitates its operation and use. Measurements of control functions were carried out on the controller connected to the electrohydraulic control block. The research mainly focused on determining the period starting from the moment of providing the signal to the moment of switching on the basic functions performed by the support section. The obtained results confirm the assumptions made. The controller's operation is very stable, and its response times are very short. It can therefore be assumed that the tested controller is correctly designed and constructed. This creates great possibilities for its practical application in the built-in system for controlling the roof support. This may be particularly important in the case of high-efficiency longwall complexes, for which wireless control of the support is planned to be used. The presented research methodology and obtained results should therefore be an important source of information in the field of testing controllers for powered roof supports.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen A.-M. Gomaa ◽  
Huda A. Ali

Background : The reactivity of 4-(dicyanomethylene)-3-methyl-l-phenyl-2-pyrazoline-5-one DCNP 1 and its derivatives makes it valuable as a building block for the synthesis of heterocyclic compounds like pyrazolo-imidazoles, - thiazoles, spiropyridines, spiropyrroles, spiropyrans and others. As a number of publications have reported on the reactivity of DCNP and its derivatives, we compiled some features of this interesting molecule. Objective: This article aims to review the preparation of DCNP, its reactivity and application in heterocyclic and dyes synthesis. Conclusion: In this review we have provided an overview of recent progress in the chemistry of DCNP and its significance in synthesis of various classes of heterocyclic compounds and dyes. The unique reactivity of DCNP offers unprecedentedly mild reaction conditions for the generation of versatile cynomethylene dyes from a wide range of precursors including amines, α-aminocarboxylic acids, their esters, phenols, malononitriles and azacrown ethers. We anticipate that more innovative transformations involving DCNP will continue to emerge in the near future.


2019 ◽  
Vol 43 (3) ◽  
pp. 96-140 ◽  
Author(s):  
Dominic D.P. Johnson ◽  
Dominic Tierney

A major puzzle in international relations is why states privilege negative over positive information. States tend to inflate threats, exhibit loss aversion, and learn more from failures than from successes. Rationalist accounts fail to explain this phenomenon, because systematically overweighting bad over good may in fact undermine state interests. New research in psychology, however, offers an explanation. The “negativity bias” has emerged as a fundamental principle of the human mind, in which people's response to positive and negative information is asymmetric. Negative factors have greater effects than positive factors across a wide range of psychological phenomena, including cognition, motivation, emotion, information processing, decision-making, learning, and memory. Put simply, bad is stronger than good. Scholars have long pointed to the role of positive biases, such as overconfidence, in causing war, but negative biases are actually more pervasive and may represent a core explanation for patterns of conflict. Positive and negative dispositions apply in different contexts. People privilege negative information about the external environment and other actors, but positive information about themselves. The coexistence of biases can increase the potential for conflict. Decisionmakers simultaneously exaggerate the severity of threats and exhibit overconfidence about their capacity to deal with them. Overall, the negativity bias is a potent force in human judgment and decisionmaking, with important implications for international relations theory and practice.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 817-817
Author(s):  
Shana Stites

Abstract Many studies find gender differences in how older adults’ report on their memory, perform on cognitive testing, and manage functional impairments that can accompany cognitive impairment. Thus, understanding gender’s effects in aging and Alzheimer’s research is key for advancing methods to prevent, slow, manage, and diagnosis cognitive impairment. Our study, CoGenT3 – The study of Cognition and Gender in Three Generations – seeks to disambiguate the effects of gender on cognition in order to inform a conceptual model, guide innovations in measurement, and support future study. To accomplish this ambitious goal, we have gathered an interdisciplinary team with expertise in psychology, cognition, sexual and gender minorities, library science, measurement, quantitative methods, qualitative methods, and gender and women’s studies. The team benefits from the intersections of expertise in being able to build new research ideas, gain novel insights, and evaluate a wide-range of actions and re-actions but this novelty can also raise challenges.


Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 372-404
Author(s):  
Julio A. Sanguesa ◽  
Vicente Torres-Sanz ◽  
Piedad Garrido ◽  
Francisco J. Martinez ◽  
Johann M. Marquez-Barja

Electric Vehicles (EVs) are gaining momentum due to several factors, including the price reduction as well as the climate and environmental awareness. This paper reviews the advances of EVs regarding battery technology trends, charging methods, as well as new research challenges and open opportunities. More specifically, an analysis of the worldwide market situation of EVs and their future prospects is carried out. Given that one of the fundamental aspects in EVs is the battery, the paper presents a thorough review of the battery technologies—from the Lead-acid batteries to the Lithium-ion. Moreover, we review the different standards that are available for EVs charging process, as well as the power control and battery energy management proposals. Finally, we conclude our work by presenting our vision about what is expected in the near future within this field, as well as the research aspects that are still open for both industry and academic communities.


Author(s):  
Gary Sutlieff ◽  
Lucy Berthoud ◽  
Mark Stinchcombe

Abstract CBRN (Chemical, Biological, Radiological, and Nuclear) threats are becoming more prevalent, as more entities gain access to modern weapons and industrial technologies and chemicals. This has produced a need for improvements to modelling, detection, and monitoring of these events. While there are currently no dedicated satellites for CBRN purposes, there are a wide range of possibilities for satellite data to contribute to this field, from atmospheric composition and chemical detection to cloud cover, land mapping, and surface property measurements. This study looks at currently available satellite data, including meteorological data such as wind and cloud profiles, surface properties like temperature and humidity, chemical detection, and sounding. Results of this survey revealed several gaps in the available data, particularly concerning biological and radiological detection. The results also suggest that publicly available satellite data largely does not meet the requirements of spatial resolution, coverage, and latency that CBRN detection requires, outside of providing terrain use and building height data for constructing models. Lastly, the study evaluates upcoming instruments, platforms, and satellite technologies to gauge the impact these developments will have in the near future. Improvements in spatial and temporal resolution as well as latency are already becoming possible, and new instruments will fill in the gaps in detection by imaging a wider range of chemicals and other agents and by collecting new data types. This study shows that with developments coming within the next decade, satellites should begin to provide valuable augmentations to CBRN event detection and monitoring. Article Highlights There is a wide range of existing satellite data in fields that are of interest to CBRN detection and monitoring. The data is mostly of insufficient quality (resolution or latency) for the demanding requirements of CBRN modelling for incident control. Future technologies and platforms will improve resolution and latency, making satellite data more viable in the CBRN management field


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 254-254
Author(s):  
Kenneth Hepburn ◽  
Molly Perkins ◽  
Drenna Waldrop ◽  
Leila Aflatoony ◽  
Mi-Kyung Song ◽  
...  

Abstract This new NIA-supported Roybal Center seeks to support Stage 1 pilot clinical trials of programs aimed at promoting caregiving competence and confidence in the great heterogeneity of dementia caregiving contexts. During our first cycle, we received 26 letters of intent (LOI) for full applications. Responses reaffirmed the Center’s premise that dementia caregiving is remarkably varied in nature. While most proposed programs focused on generic caregiving, a number addressed caregiving issues facing specific ethnic/racial groups (African American; Korean American; Native Alaskan/American Indian; Latino), and several focused on specific dementing conditions (MCI, Lewy Body Dementia,TBI-based dementia). Most described programs centered on knowledge development and daily management skill issues (e.g., management of behaviors); others specified development of physical care skills. Decision-making and communication constituted the second most common topic. Over 40% proposed adaptation of existing programs; more than 25% proposed apps or technology interventions. Investigators represented a wide range of disciplines: 45% each from Health sciences (nursing, medicine, and social work) and Social/Behavioral sciences (principally psychology) and the rest from engineering and communications. LOIs varied most in their readiness to complete a clinical trial within a year. About 40% were in very preliminary stages; 25% were clearly poised for a Stage 1 trial; 15% did not sufficiently address the Center’s aims. Key criteria for invitations to submit full applications (n=4) included: specificity of context; clinical trial readiness; reasonableness of proposed adaptation. These criteria should guide future LOIs addressing the diversity of important new research and intervention perspectives on the multifaceted work of caregiving.


2015 ◽  
Vol 30 (28) ◽  
pp. 1550139
Author(s):  
Keji Shen ◽  
Qiang Zhang ◽  
Xin-He Meng

Counting galaxy number density with wide range sky surveys has been well adopted in researches focusing on revealing evolution pattern of different types of galaxies. As understood intuitively the astrophysics environment physics is intimately affected by cosmology priors with theoretical estimation or vice versa, or simply stating that the astrophysics effect couples the corresponding cosmology observations or the way backwards. In this paper, we try to quantify the influence on galaxy number density prediction at faint luminosity limit from the uncertainties in cosmology, and how much the uncertainties blur the detection of galaxy evolution, with the hope that this trying may indeed help for precise and physical cosmology study in near future or vice versa.


Oryx ◽  
1998 ◽  
Vol 32 (1) ◽  
pp. 59-67 ◽  
Author(s):  
R. J. Timmins ◽  
T. D. Evans ◽  
Khamkhoun Khounboline ◽  
Chainoi Sisomphone

The large-antlered, or giant, muntjac Megamuntiacus vuquangensis wasdescribed from Vietnam in 1994 and found concurrently in the Annamite Mountains and nearby hill ranges of central and southern Laos. The northerly and southerly range limits are still unknown. It may occupy a wide range of habitats and is found sympatrically with the common muntjac Muntiacus muntjak. Another muntjac species, the taxonomic affinity of which is as yet undetermined, was recently discovered to occur within its range. The large-antlered muntjac is probably not threatened with extinction in the near future, but in view of its restricted range and threats from habitat degradation and hunting, it should be classified as Vulnerable in the Red Data Book. Its future in Laos is largely dependent on the recently created protected-areas system to maintain large tracts of habitat and reduce hunting pressure.


2016 ◽  
Vol 27 (1) ◽  
pp. 15-21 ◽  
Author(s):  
M Kumaresan

Purpose – The purpose of this paper is to extract the eco-friendly natural dye obtained from the flower of Spathodea campanulata and apply on silk fabric using combination of mordants. The fastness properties of the flower of Spathodea campanulata dyed silk fabric have been studied using different combination (1:3, 1:1 and 3:1) of various mordants, such as myrobolan: nickel sulphate, myrobolan: aluminium sulphate, myrobolan: potassium dichromate, myrobolan: ferrous sulphate and myrobolan: stannous chloride. The wash, rub, light and perspiration fastness of the dyed samples have been evaluated. Design/methodology/approach – For dyeing there are three methods are used. They are Pre mordanting, Simultaneous mordanting and Post mordanting methods. Dyed silk materials are tested by using wash fastness, rub fastness, light and perspiration fastness methods. Findings – It is found that Spathodea campanulata dye can be successfully used for the dyeing of silk to obtain a wide range colours by using various combinations of mordants. With regards to colour fastness, test samples exhibit excellent fastness to washing, rubbing, except for pre-mordanting using myrobolan: potassium dichromate combination; and good to excellent fastness to perspiration in both acidic and alkaline media. Originality/value – Availability of literature related to this work is not available. The study of combination of mordants of this natural dye on silk is a new research work and the large scale preparation is definitely very useful to the society.


Sign in / Sign up

Export Citation Format

Share Document