scholarly journals The Effect of Plasma Pretreatment on the Morphology and Properties of Hitus Coatings

2020 ◽  
Vol 20 (1) ◽  
pp. 21-29
Author(s):  
Lenka Kvetková ◽  
Petra Hviščová ◽  
Dávid Medveď ◽  
František Lofaj

Abstract WC coatings prepared by High Target Utilization Sputtering (HITUS), a relatively new technology, were deposited on three types of substrates. These were silicon (111), steel (100Cr6), and ceramic (WC-Co). The influence of RF plasma power pretreatment on final properties of WC coatings was investigated with two interlayer materials for bonding. The morphology, roughness, and mechanical properties of coatings were studied. The relation between plasma RF power and roughness was found. No significant change in mechanical properties was detected with change in plasma RF power. The dependence of nanohardness and scratch behavior on HITUS WC coatings was investigated.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazunori Takahashi

AbstractDevelopment of a magnetic nozzle radiofrequency (rf) plasma thruster has been one of challenging topics in space electric propulsion technologies. The thruster typically consists of an rf plasma source and a magnetic nozzle, where the plasma produced inside the source is transported along the magnetic field and expands in the magnetic nozzle. An imparted thrust is significantly affected by the rf power coupling for the plasma production, the plasma transport, the plasma loss to the wall, and the plasma acceleration process in the magnetic nozzle. The rf power transfer efficiency and the imparted thrust are assessed for two types of rf antennas exciting azimuthal mode number of $$m=+1$$ m = + 1 and $$m=0$$ m = 0 , where propellant argon gas is introduced from the upstream of the thruster source tube. The rf power transfer efficiency and the density measured at the radial center for the $$m=+1$$ m = + 1 mode antenna are higher than those for the $$m=0$$ m = 0 mode antenna, while a larger thrust is obtained for the $$m=0$$ m = 0 mode antenna. Two-dimensional plume characterization suggests that the lowered performance for the $$m=+1$$ m = + 1 mode case is due to the plasma production at the radial center, where contribution on a thrust exerted to the magnetic nozzle is weak due to the absence of the radial magnetic field. Subsequently, the configuration is modified so as to introduce the propellant gas near the thruster exit for the $$m=0$$ m = 0 mode configuration and the thruster efficiency approaching twenty percent is successfully obtained, being highest to date in the kW-class magnetic nozzle rf plasma thrusters.


2020 ◽  
Vol 59 (1) ◽  
pp. 340-351
Author(s):  
Lin Yinghua ◽  
Ping Xuelong ◽  
Kuang Jiacai ◽  
Deng Yingjun

AbstractNi-based alloy coatings prepared by laser cladding has high bonding strength, excellent wear resistance and corrosion resistance. The mechanical properties of coatings can be further improved by changing the composition of alloy powders. This paper reviewed the improved microstructure and mechanical properties of Ni-based composite coatings by hard particles, single element and rare earth elements. The problems that need to be solved for the particle-reinforced nickel-based alloy coatings are pointed out. The prospects of the research are also discussed.


Wear ◽  
2021 ◽  
pp. 204069
Author(s):  
Yang Xu ◽  
Jingxian Qin ◽  
Jiabin Shen ◽  
Shaoyun Guo ◽  
Khalid Lamnawar

2004 ◽  
Vol 36 (1) ◽  
pp. 27-41 ◽  
Author(s):  
A.V. Byakova ◽  
Yu.V. Milman ◽  
A.A. Vlasov

Specific features of the test method procedure capable for determining the plasticity characteristic dH by indentation of inhomogeneous coatings affected by residual stress was clarified. When the value of the plasticity characteristic for coating was found to be as great as dH > 0.5 a simplified model was found to be reasonably adequate, while a modified model assumed compressibility of the deformation core beneath indentation. The advantage of the modified approach compared to the simplified one was grounded experimentally only if the elastic deformation for coating becomes greater than ?e ? 3.5%, resulting in the decrease of plasticity characteristic dH < 0.5. To overcome non accuracy caused by the effect of the scale factor on measurement results a comparison of different coatings was suggested using stabilized values of the plasticity characteristic dH determined under loads higher than critical, P ? Pc, ensuring week dependence of micro hardness values on the indentation load.


Author(s):  
Philipp Knospe ◽  
Patrick Böhm ◽  
Jochen Gutmann ◽  
Michael Dornbusch

AbstractNowadays, coating materials must meet high demands in terms of mechanical, chemical and optical properties in all areas of application. Amongst others, amines and isocyanates are used as crosslinking components for curing reactions, meeting the highly demanding properties of the coatings industry. In this work, a new crosslinking reaction for coatings based on oxazoline chemistry is investigated with the objective to overcome disadvantages of established systems and fulfill the need for sustainable coating compounds. The oxazoline-group containing resin, synthesized from commercially available substances, undergoes cationic self-crosslinking polymerization to build up a network based on urethane and amide moieties. NMR-, IR- and ES-mass spectroscopy are suitable techniques to characterize the synthesized oxazoline monomers, which are linked to polyisocyanates and polymerized afterwards via self-polymerization. The progress of crosslinking is followed by changes in IR spectra and by rheological measurements to calculate time dependent values for storage and loss modulus. The glass transition temperature of the resulting coating is determined, too. Furthermore, sol–gel-analysis is performed to determine the degree of crosslinking. After application on steel and aluminium panels, application tests are performed. In addition to excellent adhesion to the substrate, the polymer network shows promising mechanical properties and with that it could represent a new technology for the coatings industry.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 173
Author(s):  
Alessandro Pistone ◽  
Cristina Scolaro ◽  
Annamaria Visco

The accumulation of marine organisms on ship hulls, such as microorganisms, barnacles, and seaweeds, represents a global problem for maritime industries, with both economic and environmental costs. The use of biocide-containing paints poses a serious threat to marine ecosystems, affecting both target and non-target organisms driving science and technology towards non-biocidal solutions based on physico-chemical and materials properties of coatings. The review reports recent development of hydrophobic protective coatings in terms of mechanical properties, correlated with the wet ability features. The attention is focused mainly on coatings based on siloxane and epoxy resin due to the wide application fields of such systems in the marine industry. Polyurethane and other systems have been considered as well. These coatings for anti-fouling applications needs to be both long-term mechanically stable, perfectly adherent with the metallic/composite substrate, and capable to detach/destroy the fouling organism. Prospects should focus on developing even “greener” antifouling coatings solutions. These coatings should also be readily addressable to industrial scale-up for large-scale product distribution, possibly at a reasonable cost.


2004 ◽  
Vol 471-472 ◽  
pp. 711-715
Author(s):  
Feng Xie ◽  
H.D. Yang ◽  
C.G. Zhang ◽  
N. Liu

Nano technology is a new technology and begun in 1980’s. The paper firstly overviews the development of cermet cutter and its general situation in research, and then introduces the inherent properties owned by nano-technology and nano-material. In the end the nano-TiN modified TiC-based cermet cutter is fabricated and the mechanical properties of the developed cutter are also tested and analyzed. In order to study nano-modification effect, both nano-modified cermet and general cermet have been made. The mechanical properties of two kinds of materials are also measured. By comparing the measured datum, it has been indicated that the nano-modified cermet has better mechanical properties and the nano-modification technology is effective. This presents a new way to increase the toughness of cermet cutter.


2018 ◽  
Vol 8 (10) ◽  
pp. 1737 ◽  
Author(s):  
Arshed Mohammed ◽  
Sallehuddin Haris ◽  
Mohd Nuawi

Recent developments in ultrasonic material testing have increased the need to evaluate the current status of the different applications of piezoelectric elements (PEs). This research have reviewed state-of-the-art emerging new technology and the role of PEs in tests for a number of mechanical properties, such as creep, fracture toughness, hardness, and impact toughness, among others. In this field, importance is given to the following variables, namely, (a) values of the natural frequency to PEs, (b) type and dimensions of specimens, and (c) purpose of the tests. All these variables are listed in three tables to illustrate the nature of their differences in these kinds of tests. Furthermore, recent achievements in this field are emphasized in addition to the many important studies that highlight the role of PEs.


Sign in / Sign up

Export Citation Format

Share Document