scholarly journals Analysis of Deformations of the Skylight Construction at the Main Hall of the Warsaw University of Technology

2015 ◽  
Vol 97 (1) ◽  
pp. 35-46
Author(s):  
Waldemar Odziemczyk

AbstractThe paper presents technology and results of measurements of the steel construction of the skylight of the Main Hall of the Warsaw University of Technology. The new version of the automated measuring system has been used for measurements. This system is based on Leica TCRP1201+ total station and the TCcalc1200 software application, developed by the author, which operates on a laptop computer connected with the total station by the wire. Two test measurements were performed. Each of them consisted of cyclic measurement using the polar method, from one station; points located on the skylight construction, as well as control points located on concrete, bearing poles, were successively measured. Besides geometrical values (such as Hz, V angles and the slope distance D), the changes of temperature and atmospheric pressure, were also recorded. Processed results of measurements contained information concerning the behaviour of the skylight; asymmetry of horizontal displacements with respect to the X axis have been proved. Changes of parameters of the instrument telescope and changes of the instrument orientation were also stated; they were connected with changes of the temperature. The most important results of works have been presented in the form of diagrams.

2020 ◽  
Vol 12 (18) ◽  
pp. 2874 ◽  
Author(s):  
Cezary Specht ◽  
Andrzej Wilk ◽  
Wladyslaw Koc ◽  
Krzysztof Karwowski ◽  
Paweł Dąbrowski ◽  
...  

The problem of the reproduction of the railway geometric layout in the global spatial system is currently solved in the form of measurements that use geodetic railway networks and also, in recent years, efficient methods of mobile positioning (mainly satellite and inert). The team of authors from the Gdańsk University of Technology and the Maritime University in Gdynia as part of the research project InnoSatTrack is looking for effective and efficient methods for the inventory of railway lines. The research is part of a wider investigation BRIK (Research and Development in Railway Infrastructure, in polish: Badania i Rozwój w Infrastrukturze Kolejowej). This paper presents a comparative analysis of the problem of the reproduction of the trajectory of the measuring system using tacheometry, satellite measurements made using a measurement trolley, and mobile satellite measurements. Algorithms enabling the assessment of the compliance of satellite measurements with classic tacheometric measurements were presented. To this end, the authors held measurement sessions using modern geodetic instruments and satellite navigation on a section of the railway line. The results of the measurements indicate the convergence of the level of accuracy achieved by different measuring techniques.


2013 ◽  
Vol 411-414 ◽  
pp. 922-925 ◽  
Author(s):  
Yao Liang Shi ◽  
Guang Yu Zheng ◽  
Li Wu ◽  
Shu Sheng Peng

A parameter measuring system is introduced in this paper, which is used for recording the temperature and humidity, atmospheric pressure, rotation speed and acceleration, etc. The system uses a 32-bit RISC microprocessor of STM32F103ZET6 based on the core of ARM Coretex-M3 as master chip. And it writes the data recorded to NAND FLASH. After it finishes, it copies the data to host-computer through SD card.


2020 ◽  
Vol 10 (9) ◽  
pp. 3242 ◽  
Author(s):  
Henryka Danuta Stryczewska

A review of the supply systems of non-thermal plasma reactors (NTPR) with dielectric barrier discharge (DBD), atmospheric pressure plasma jets (APPJ) and gliding arc discharge (GAD) was performed. This choice is due to the following reasons: these types of electrical discharges produce non-thermal plasma at atmospheric pressure, the reactor design is well developed and relatively simple, the potential area of application is large, especially in environmental protection processes and biotechnologies currently under development, theses reactors can be powered from similar sources using non-linear transformer magnetic circuits and power electronics systems, and finally, these plasma reactors and their power supply systems, as well as their applications are the subject of research conducted by the author of the review and her team from the Department of Electrical Engineering and Electrotechnology of the Lublin University of Technology, Poland.


2019 ◽  
Vol 304 ◽  
pp. 01005
Author(s):  
Aleksander Olejnik ◽  
Stanisław Kachel ◽  
Robert Rogólski ◽  
Michał Szcześniak

The article describes the vibration measurement technology used for light aircraft and some results obtained during the prototyping process. The aim of researches was to determine the resonant frequencies and natural modes of an aircraft or its selected structural components. Ground Vibration Testing is an essential dynamic structural test necessary to carry out before the aircraft certification. This test should be performed on the aircraft example which is predicted to test in flight. The measuring system used in the Institute of Aviation Technology of the Military University of Technology consists of a multi-channel LMS SCADAS analyzer, a set of piezoelectric accelerometers, two vibration exciters equipped with impedance heads and a computer with the Test.Lab Software. The aim of the article is to present the methodology of performing GVT tests. Using the equipment applied to an aircraft or its airframe component, key vibration characteristics corresponding to resonant points can be determined. Not only completed aircraft can be tested, but also its isolated fragments (wings, stabilizers, tail units) or just empty airframe. Testing separately supported components allows to examine their aeroelastic properties at early stage of prototyping. As examples of the use of vibration measurements in various stages of the prototyping process, three examples are presented herein. The isolated strut-braced wing from of the light reconnaissance aircraft OSA, the airframe of a light jet FLARIS LAR, and the light drone ATD JET-2 intended to be an aerial target for some anti-aircraft artillery sets. Some exemplary results obtained from testing these objects were presented. At the end, some observations and conclusions were noted in the context of usefulness of conducted researches.


Author(s):  
Aleksander Olejnik ◽  
Stanisław Kachel ◽  
Robert Rogólski ◽  
Michał Szcześniak

The article describes the vibration measurement technology used in experimental investigation of light aircraft and some series of exemplary results obtained during the prototyping process. The aim of investigations presented herein was to determine the resonant frequencies and natural modes of an aircraft or its selected structural components. Ground vibration testing is an essential dynamic structural test necessary to carry out before the aircraft certification. This test should be performed on the aircraft example which is predicted to be tested in flight. The measuring system used for ground vibration testing in the Institute of Aviation Technology of the Military University of Technology consists of a multi-channel LMS SCADAS analyzer, a set of piezoelectric accelerometers, two vibration exciters equipped with impedance heads and a computer with the Test.Lab Software. The aim of the article was to present the methodology of performing ground vibration testing tests. Having applied the equipment to measure an airplane or its airframe component, key vibration characteristics corresponding to specific resonant points can be determined. Not only completed aircraft can be tested but also its isolated fragments (wings, stabilizers, tail units) or just empty airframe. Testing separately supported components allows examining their aeroelastic properties at early stage of prototyping. Ground vibration testing technology applied in various stages of the prototyping process was demonstrated in four peculiar research cases. The testing examples presented herein were the following: the isolated strut-braced wing of a light reconnaissance airplane, the light drone imitating an aerial target for some on-ground anti-aircraft artillery sets, the empty airframe of a very light jet and the miniature UAV. Some exemplary results obtained from testing these objects were presented. At the end, some observations and conclusions were noted in the context of usefulness of conducted researches.


2014 ◽  
Vol 1073-1076 ◽  
pp. 1934-1940 ◽  
Author(s):  
Wei Dong Li ◽  
Nan Lin ◽  
Xu Chen

Combined with the experimental tunnel actual environment to select the appropriate control points as the logo, layout tunnel three dimensional modeling control network. using high-precision total station TM30 to control, measure and acquire image control points coordinate. in the following field collection imaging principle, the actual target of image acquisition, 3D modeling of tunnel based on the software platform of Lensphoto, the research results show that, the tunnel homonymous control point coordinates measured by Lensphoto three-dimensional model and using high-precision total station TM30 observations are of basic agreement, the error in the centimeter level, verified the feasibility of using digital close range photogrammetry in actual measurement of tunnel engineering,has the long-term guiding significance to the tunnel three-dimensional digital information collection and safety production.


2012 ◽  
Vol 446-449 ◽  
pp. 2947-2950
Author(s):  
Feng Yun Yang ◽  
Wen Zhao ◽  
Mao Lin Xu

Discuss monitoring way of slope sliding of ANGANG open mine on Robotic Measuring System TM30 technology and processing data’s method, according to survey speciafication of deformation observation, analyses deformation result and compares it with speciafication of deformation observation, reports it to the mine company to insure safety and stability of mine produce. Deformation monitoring on Robotic total station TM30 that is Observation flexible, high precision and high efficiency is worth spreading.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aleksander Olejnik ◽  
Robert Rogólski ◽  
Michał Szcześniak

Purpose The paper describes the application of two different vibration measurement methods for the identification of natural modes of the miniature unmanned aerial vehicle (UAV). The purpose of this study is to determine resonant frequencies and modes of mini-airplane within the specified range of frequency values. Design/methodology/approach Special measuring equipment was used including both contact and non-contact techniques. The measuring systems on equipment of the Institute of Aviation Technology in the Faculty of Mechatronics, Armament and Aerospace of Military University of Technology (Warsaw, PL) were used to conduct measurements. In traditional ground vibration testing (GVT) methods a large number of sensors should be attached to the aircraft. The weight of sensors and cables is negligible in relation to the mass of the large aircraft. However, for small and lightweight unmanned aerial vehicles, this could bring a significant mass component in relation to the total mass of the tested object. Findings The real mini-UAV construction was used to investigate its resonant modes in the range of frequencies between 0 and 50 Hz. After receiving the output values it is possible to perform some flutter calculations within the range of operational velocities. As there is no certainty that the computed modes are in accordance with those natural ones some parametric calculations are recommended. Modal frequencies depend on structural parameters which are quite difficult to identify. Adopting their values from the reasonable range it is possible to assign the range of possible frequencies. The frequencies of rudder or elevator modes are dependent on their mass moments of inertia and rigidity of controls. The critical speeds of tail flutter were calculated for various combinations of stiffness or mass values. Practical implications In this paper, some specific techniques of performing the GVT test were presented. Two different measuring methods were applied, i.e. the contact method and the non-contact method. Using the dedicated apparatus in relation to the mini-airplane, properly prepared in terms of mass distribution, rudders deflection stiffness and proper support, some resonant characteristics can be determined. The contact measuring system consists of a multi-channel analyzer, piezoelectric accelerometers, electrodynamic exciters, amplifiers, impedance heads and a computer with the Test.Lab Software. As the non-contact method, a laser scanning vibrometer was used. The principle of its operation is based on the separation of the emitted laser beam. The returning beam reflected from a vibrating object is captured by the camera and compared to the reference beam. Dedicated software analyzes collected data and on the basis of it creates animations of structural vibrational shapes and spectral plots within the investigated frequency range. Originality/value The object used for research is the mini-UAV Rybitwa – composite mini-plane with a classic aerodynamic layout manufactured in Institute of Aviation Technology Military University of Technology. In the work, both measurement methods and some sample results were presented. Results referenced to dynamic properties of the mini-UAV can be applied in the future for its finite element model tuning, what would be useful for the needs of some parametric analyzes in case of some UAV modifications because of its structural or equipment modifications.


2018 ◽  
Vol 63 ◽  
pp. 00013
Author(s):  
Tadeusz Widerski ◽  
Karol Daliga

The article presents a comparison of obtained models of a test object. Close range photogrammetry was used to obtain 3D models. As test object was used one of the rooms located in Wisłoujście Fortress in Gdańsk, Poland. Different models were obtained by using different distribution and number of reference points. Article contains analysis of differences between coordinates of control points obtained from total station measurements and estimated from different 3D models.


Sign in / Sign up

Export Citation Format

Share Document