scholarly journals Integrated Precipitable Water Vapour Measurements At Polish Polar Station Hornsund From GPS Observations Verified By Aerological Techniques

2015 ◽  
Vol 98 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Michał Kruczyk ◽  
Tomasz Liwosz

AbstractWe present results of the comparison of integrated precipitable water measurements from GPS solution and aerological techniques: CIMEL-318 sun-photometer and radiosoundings (RAOB). Integrated Precipitable Water (IPW) - important meteorological parameter is derived from GPS tropospheric solutions by known procedure for GPS station at Polish Polar Station, Hornsund (Svalbard). The relation between 2 m temperature and the mean temperature of atmosphere above, used to convert from wet part of tropospheric delay (ZWD) to IPW, has been derived using local radiosonde data at Ny Alesund. Sunphotometer data have been provided by AERONET. Quality of dedicated tropospheric solutions has been verified by comparison with EPN tropospheric combined product. Several IPW comparisons and analyses lead to determination of systematic difference between techniques: GPS IPW and sunphotometer data (not present in case of RAOBs). IPW measured by CIMEL is on average 5% bigger (0.5 mm) than IPW from GPS. This bias changes seasonally and is a function of atmospheric temperature what signals some systematic deficiencies in solar photometry as IPW retrieval technique. CIMEL IPW show some temperature dependent bias also in relation to radiosoundings.

2017 ◽  
Vol 103 (1) ◽  
pp. 46-65
Author(s):  
Michał Kruczyk ◽  
Tomasz Liwosz ◽  
Aleksander Pietruczuk

Abstract This paper describes results of integrated precipitable water co-located measurements from two techniques: GPS solution and CIMEL-318 sunphotometer. Integrated Precipitable Water (IPW) is an important meteorological parameter and is derived from GPS tropospheric solutions for GPS station at Central Geophysical Observatory (CGO), Polish Academy of Sciences (PAS), Belsk and compared with sunphotometer (CIMEL-318 device by Cimel Electronique) data provided by Aerosol Robotic Network (AERONET). Two dedicated and independent GPS solutions: network solution in the sub-network of European Permanent Network (EPN) and precise point positioning solution have been made to obtain tropospheric delays. The quality of dedicated tropospheric solutions has been verified by comparison with EPN tropospheric combined product. Several IPW comparisons and analyses revealed systematic difference between techniques (difference RMS is over 1 mm). IPW bias changes with season: annual close to 1 mm IPW (and semi-annual term also present). IPW bias is a function of atmospheric temperature. Probable cause of this systematic deficiency in solar photometry as IPW retrieval technique is a change of optical filter characteristics in CIMEL.


Author(s):  
Houaria Namaoui ◽  
Salem Kahlouche ◽  
Ahmed Hafidh Belbachir

Remote sensing of atmospheric water vapour using GNSS and Satellite data has become an efficient tool in meteorology and climate research. Many satellite data have been increasingly used to measure the content of water vapour in the atmosphere and to characterize its temporal and spatial variations. In this paper, we have used observations from radiosonde data collected from three stations (Algiers, Bechar and Tamanrasset) in Algeria from January to December 2012 to evaluate Moderate Resolution Imaging Spectroradiometer (MODIS) total precipitable water vapour (PWV) products. Results show strong agreement between the total precipitable water contents estimated based on radiosondes observations and the ones measured by the sensor MODIS with the correlation coefficients in the range 0.69 to 0.95 and a mean bias, which does not exceed 1.5.  


Proceedings ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 24 ◽  
Author(s):  
Raquel Perdiguer-López ◽  
José Luis Berné-Valero ◽  
Natalia Garrido-Villén

A processing methodology with GNSS observations to obtain Zenith Tropospheric Delay using Bernese GNSS Software version 5.2 is revised in order to obtain Precipitable Water Vapor (PWV). The most traditional PWV observation method is the radiosonde and it is often used as a standard to validate those derived from GNSS. For this reason, a location in the north of Spain, in A Coruña, which has a GNSS station with available data and also a radiosonde station, was chosen. Two GPS weeks, in different weather conditions were calculated. The result of the comparison between the GNSS- retrieved PWV and Radiosonde-PWV is explained in the last section of this paper.


2021 ◽  
Author(s):  
Feng Peng ◽  
Li Fei ◽  
Yan Jianguo ◽  
Jean-Pierre Barriot

<p>With its high temporal resolution, unique mesoscale sampling scale and full weather capability, GNSS is now contributing as an important tool for monitoring the global atmospheric environment. The GNSS tropospheric zenith delay and the corresponding precipitable water vapor data (PW) are already widely applied in many weather models. High precision GNSS processing also estimates tropospheric delay gradients, which contain azimuthal isotropic information about the state of the atmosphere. However, the application of GNSS tropospheric delay gradients is not yet fully explored because of several obstacles. First, it suffers from the satellite constellations geometry and multipaths, and the gradients estimations are noisier than the zenithal delays. Second, the delay gradients were first developed for positioning purposes. GNSS tomography takes advantage of the delay gradients but requires a dense GNSS network. Here we introduce a new method to obtain the line-of-sight wet refractivity from a stand-alone GNSS receiver. We assume that the wet refractivity is mainly governed by a scale height (exponential law) and that the departures from the decaying exponential can be mapped as a set of low degree 3D Zernike functions and Chebyshev polynomials. We show up examples of inversion with data acquired at the IGS station in Tahiti, French Polynesia. We will also discuss the possibility of joint inversions with other measurements, using radiosonde data as an example.</p>


2017 ◽  
Vol 10 (6) ◽  
pp. 2045-2060 ◽  
Author(s):  
Changyong He ◽  
Suqin Wu ◽  
Xiaoming Wang ◽  
Andong Hu ◽  
Qianxin Wang ◽  
...  

Abstract. The Global Positioning System (GPS) is a powerful atmospheric observing system for determining precipitable water vapour (PWV). In the detection of PWV using GPS, the atmospheric weighted mean temperature (Tm) is a crucial parameter for the conversion of zenith tropospheric delay (ZTD) to PWV since the quality of PWV is affected by the accuracy of Tm. In this study, an improved voxel-based Tm model, named GWMT-D, was developed using global reanalysis data over a 4-year period from 2010 to 2013 provided by the United States National Centers for Environmental Prediction (NCEP). The performance of GWMT-D was assessed against three existing empirical Tm models – GTm-III, GWMT-IV, and GTm_N – using different data sources in 2014 – the NCEP reanalysis data, surface Tm data provided by Global Geodetic Observing System and radiosonde measurements. The results show that the new GWMT-D model outperforms all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT-D model can provide a practical alternative Tm determination method in real-time GPS-PWV remote sensing systems.


2008 ◽  
Vol 21 (10) ◽  
pp. 2218-2238 ◽  
Author(s):  
Junhong Wang ◽  
Liangying Zhang

Abstract A global, 10-yr (February 1997–April 2006), 2-hourly dataset of atmospheric precipitable water (PW) was produced from ground-based global positioning system (GPS) measurements of zenith tropospheric delay (ZTD) at approximately 350 International Global Navigation Satellite Systems (GNSS) Service (IGS) ground stations. A total of 130 pairs of radiosonde and GPS stations are found within a 50-km distance and 100-m elevation of each other. At these stations, 14 types of radiosondes are launched and the following 3 types of humidity sensors are used: capacitive polymer, carbon hygristor, and goldbeater’s skin. The PW comparison between radiosonde and GPS data reveals three types of systematic errors in the global radiosonde PW data: measurement biases of the 14 radiosonde types along with their characteristics, long-term temporal inhomogeneity, and diurnal sampling errors of once- and twice-daily radiosonde data. The capacitive polymer generally shows mean dry bias of −1.19 mm (−6.8%). However, the carbon hygristor and goldbeater’s skin hygrometers have mean moist biases of 1.01 mm (3.4%) and 0.76 mm (5.4%), respectively. The protective shield over the humidity sensor boom introduced in late 2000 reduces the PW dry bias from 6.1% and 2.6% in 2000 to 3.9% and −1.14% (wet bias) in 2001 for the Vaisala RS80A and RS80H, respectively. The dry bias in Vaisala radiosondes has larger magnitudes during the day than at night, especially for RS90 and RS92, with a day–night difference of 5%–7%. The time series of monthly mean PW differences between the radiosonde and GPS are able to detect significant changes associated with known radiosonde type changes. Such changes would have a significant impact on the long-term trend estimate. Diurnal sampling errors of twice-daily radiosonde data are generally within 2%, but can be as much as 10%–15% for the once-daily soundings. In conclusion, this study demonstrates that the global GPS PW data are useful for identifying and quantifying several kinds of systematic errors in global radiosonde PW data. Several recommendations are made for future needs of global radiosonde and GPS networks and data.


2000 ◽  
Vol 17 (3) ◽  
pp. 260-269 ◽  
Author(s):  
Marton G. Hidas ◽  
Michael G. Burton ◽  
Matthew A. Chamberlain ◽  
John W. V. Storey

AbstractThe Antarctic Plateau provides the best terrestrial sites for infrared (IR) and submillimetre (sub-mm) astronomy. In this paper we examine the relative importance of temperature, aerosol content and precipitable water vapour to determine which parameters have the greatest influence on atmospheric transmission and sky brightness. We use the atmospheric modelling program MODTRAN to model the observed sky spectrum at the South Pole from the near-IR to the sub-mm. We find that temperature and aerosol content determine the quality of near-IR observing conditions, aerosol content is the determining factor in the mid-IR up to 20 μm, while at longer wavelengths, including the sub-mm, it is the water vapour content that matters. Finding a location where aerosol levels are minimised is a key constraint in determining the optimum site on the Antarctic Plateau for an IR observatory.


2021 ◽  
Vol 13 (15) ◽  
pp. 3008
Author(s):  
Lijie Guo ◽  
Liangke Huang ◽  
Junyu Li ◽  
Lilong Liu ◽  
Ling Huang ◽  
...  

Tropospheric delay is a major error source in the Global Navigation Satellite System (GNSS), and the weighted mean temperature (Tm) is a key parameter in precipitable water vapor (PWV) retrieval. Although reanalysis products like the National Centers for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERA-Interim) data have been used to calculate and model the tropospheric delay, Tm, and PWV, the limitations of the temporal and spatial resolutions of the reanalysis data have affected their performance. The release of the fifth-generation accurate global atmospheric reanalysis (ERA5) and the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) provide the opportunity to overcome these limitations. The performances of the zenith tropospheric delay (ZTD), zenith wet delay (ZWD), Tm, and zenith hydrostatic delay (ZHD) of ERA5 and MERRA-2 data from 2016 to 2017 were evaluated in this work using GNSS ZTD and radiosonde data over the globe. Taking GNSS ZTD as a reference, the ZTD calculated from MERRA-2 and ERA5 pressure-level data were evaluated in temporal and spatial scales, with an annual mean bias and root mean square (RMS) of 2.3 and 10.9 mm for ERA5 and 4.5 and 13.1 mm for MERRA-2, respectively. Compared to radiosonde data, the ZHD, ZWD, and Tm derived from ERA5 and MERRA-2 data were also evaluated on temporal and spatial scales, with annual mean bias values of 1.1, 1.7 mm, and 0.14 K for ERA5 and 0.5, 4.8 mm, and –0.08 K for MERRA-2, respectively. Meanwhile, the annual mean RMS was 4.5, 10.5 mm, and 1.03 K for ERA5 and 4.4, 13.6 mm, and 1.17 K for MERRA-2, respectively. Tropospheric parameters derived from MERRA-2 and ERA5, with improved temporal and spatial resolutions, can provide a reference for GNSS positioning and PWV retrieval.


2016 ◽  
Vol 9 (9) ◽  
pp. 4759-4781 ◽  
Author(s):  
Julio A. Castro-Almazán ◽  
Gabriel Pérez-Jordán ◽  
Casiana Muñoz-Tuñón

Abstract. A semiempirical method for estimating the error and optimum number of sampled levels in precipitable water vapour (PWV) determinations from atmospheric radiosoundings is proposed. Two terms have been considered: the uncertainties in the measurements and the sampling error. Also, the uncertainty has been separated in the variance and covariance components. The sampling and covariance components have been modelled from an empirical dataset of 205 high-vertical-resolution radiosounding profiles, equipped with Vaisala RS80 and RS92 sondes at four different locations: Güímar (GUI) in Tenerife, at sea level, and the astronomical observatory at Roque de los Muchachos (ORM, 2300 m a.s.l.) on La Palma (both on the Canary Islands, Spain), Lindenberg (LIN) in continental Germany, and Ny-Ålesund (NYA) in the Svalbard Islands, within the Arctic Circle. The balloons at the ORM were launched during intensive and unique site-testing runs carried out in 1990 and 1995, while the data for the other sites were obtained from radiosounding stations operating for a period of 1 year (2013–2014). The PWV values ranged between ∼  0.9 and ∼  41 mm. The method sub-samples the profile for error minimization. The result is the minimum error and the optimum number of levels. The results obtained in the four sites studied showed that the ORM is the driest of the four locations and the one with the fastest vertical decay of PWV. The exponential autocorrelation pressure lags ranged from 175 hPa (ORM) to 500 hPa (LIN). The results show a coherent behaviour with no biases as a function of the profile. The final error is roughly proportional to PWV whereas the optimum number of levels (N0) is the reverse. The value of N0 is less than 400 for 77 % of the profiles and the absolute errors are always <  0.6 mm. The median relative error is 2.0 ±  0.7 % and the 90th percentile P90 = 4.6 %. Therefore, whereas a radiosounding samples at least N0 uniform vertical levels, depending on the water vapour content and distribution of the atmosphere, the error in the PWV estimate is likely to stay below ≈  3 %, even for dry conditions.


2015 ◽  
Vol 8 (1) ◽  
pp. 127-171
Author(s):  
N. Courcoux ◽  
M. Schröder

Abstract. Recently, the reprocessed Advanced Television Infrared Observation Satellite (TIROS)-N Operational Vertical Sounder (ATOVS) tropospheric water vapour and temperature data record has been released by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF). ATOVS observations from the National Oceanic and Atmospheric Agency (NOAA)-15 through NOAA-19 and EUMETSAT's Meteorological operational (Metop-A) satellites have been consistently reprocessed to generate 13 years (1999–2011) of global water vapour and temperature daily and monthly means with a spatial resolution of 90 km × 90 km. After pre-processing, an optimal estimation scheme has been applied to the observations to simultaneously infer temperature and water vapour profiles. In a post-processing step an objective interpolation method (Kriging) has been applied to allow for gap filling. The product suite includes total precipitable water vapour (TPW), layer integrated water vapour (LPW) and layer mean temperature for five tropospheric layers, as well as specific humidity and temperature at six tropospheric levels and is referenced under doi:10.5676/EUM_SAF_CM/WVT_ATOVS/V001. To our knowledge this is the first time that the ATOVS record (1998–now) has been consistently reprocessed (1999–2011) to retrieve water vapour and temperature products. TPW and LPW products were compared to corresponding products from the Global Climate Observing System (GCOS) Upper-Air Network (GUAN) radiosonde observations and from the Atmospheric InfraRed Sounder (AIRS) version 5 satellite data record. The TPW shows a good agreement with the GUAN radiosonde data: average bias and root mean square error (RMSE) are −0.2 and 3.3 kg m−2, respectively. The maximum absolute (relative) bias and RMSE values decrease (increase) strongly with height. While the RMSE relative to AIRS is generally smaller, the TPW bias relative to AIRS is larger with dominant contributions from precipitating areas. The consistently reprocessed ATOVS data record exhibits an improved quality and an improved stability relative to the operational CM SAF ATOVS products when compared to the TPW from GUAN radiosonde data over the period 2004–2011. Finally, it became evident that the change in the number of satellites used for the retrieval combined with the use of the Kriging leads to breakpoints in the ATOVS data record so that a variability analysis of the data record is not recommended for the time period from January 1999 to January 2001.


Sign in / Sign up

Export Citation Format

Share Document