Systematic Errors in Global Radiosonde Precipitable Water Data from Comparisons with Ground-Based GPS Measurements

2008 ◽  
Vol 21 (10) ◽  
pp. 2218-2238 ◽  
Author(s):  
Junhong Wang ◽  
Liangying Zhang

Abstract A global, 10-yr (February 1997–April 2006), 2-hourly dataset of atmospheric precipitable water (PW) was produced from ground-based global positioning system (GPS) measurements of zenith tropospheric delay (ZTD) at approximately 350 International Global Navigation Satellite Systems (GNSS) Service (IGS) ground stations. A total of 130 pairs of radiosonde and GPS stations are found within a 50-km distance and 100-m elevation of each other. At these stations, 14 types of radiosondes are launched and the following 3 types of humidity sensors are used: capacitive polymer, carbon hygristor, and goldbeater’s skin. The PW comparison between radiosonde and GPS data reveals three types of systematic errors in the global radiosonde PW data: measurement biases of the 14 radiosonde types along with their characteristics, long-term temporal inhomogeneity, and diurnal sampling errors of once- and twice-daily radiosonde data. The capacitive polymer generally shows mean dry bias of −1.19 mm (−6.8%). However, the carbon hygristor and goldbeater’s skin hygrometers have mean moist biases of 1.01 mm (3.4%) and 0.76 mm (5.4%), respectively. The protective shield over the humidity sensor boom introduced in late 2000 reduces the PW dry bias from 6.1% and 2.6% in 2000 to 3.9% and −1.14% (wet bias) in 2001 for the Vaisala RS80A and RS80H, respectively. The dry bias in Vaisala radiosondes has larger magnitudes during the day than at night, especially for RS90 and RS92, with a day–night difference of 5%–7%. The time series of monthly mean PW differences between the radiosonde and GPS are able to detect significant changes associated with known radiosonde type changes. Such changes would have a significant impact on the long-term trend estimate. Diurnal sampling errors of twice-daily radiosonde data are generally within 2%, but can be as much as 10%–15% for the once-daily soundings. In conclusion, this study demonstrates that the global GPS PW data are useful for identifying and quantifying several kinds of systematic errors in global radiosonde PW data. Several recommendations are made for future needs of global radiosonde and GPS networks and data.

2013 ◽  
Vol 30 (2) ◽  
pp. 197-214 ◽  
Author(s):  
Junhong Wang ◽  
Liangying Zhang ◽  
Aiguo Dai ◽  
Franz Immler ◽  
Michael Sommer ◽  
...  

Abstract The Vaisala RS92 radiosonde is the most widely used type of sonde in the current global radiosonde network. One of the largest biases in the RS92 humidity data is its daytime solar radiation dry bias (SRDB). An algorithm [referred to as NCAR radiation bias correction (NRBC)] was developed to correct the SRDB based on a more complicated algorithm developed by the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN). The NRBC to relative humidity (RH) is a function of the measured RH and temperature, and the temperature solar radiation correction. The latter varies with pressure, season, and time of the day. The RH correction has a mean magnitude of about 2%–4% and 6%–8% in the lower–midtroposphere and upper troposphere, respectively. The NRBC is evaluated against the GRUAN-corrected RS92 data and the ground-based GPS-estimated precipitable water (PW). The corrected RH agrees with the GRUAN data within ±0.5% on average, with standard deviations of about 1%–2% and 2%–6% in the lower–midtroposphere and upper troposphere, respectively. The NRBC leads to reduced mean biases, and better agreement with the GPS PW and its diurnal cycle. The NRBC has been applied to historical radiosonde data at 65 stations. The radiosonde humidity data, both with and without the NRBC, are homogenized using the method of Dai et al. (2011). The NRBC results in consistently elevated RHs throughout the whole record in the homogenized data. This could have a significant impact on global reanalysis products when they are assimilated into the reanalysis models. However, the NRBC has insignificant effects on the long-term trends as the correction is primarily for mean biases.


2017 ◽  
Vol 11 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Sobhy Abdel-Monam Younes

Background:The author compares several methods to map the a priori wet tropospheric delay of GNSS signals in Egypt from the zenith direction to lower elevations.Methods and Materials:The author compared the following mapping techniques against ray-traced delays computed for radiosonde profiles under the assumption of spherical symmetry: Saastamoinen, Hopfield, Black, Chao, Ifadis, Herring, Niell, Moffett, Black and Eisner and UNBabc mapping functions. Radiosonde data were computed from radiosonde stations at the Egyptian stations; in the south of Egypt, near the Mediterranean Sea, and near the Red Sea over a period of 5 years (2000-2005), most of the stations launched radiosonde twice daily, every day of the year. Moreover, data is received from the Egyptian Meteorology Authority.Results and Conclusion:The results indicate that currently, the saastamoinen mapping function should be used for all geodetic applications in Egypt, and if necessary, the Chao and Moffett mapping functions can serve as an acceptable replacement without introducing a significant bias into the station position.


2020 ◽  
Vol 12 (18) ◽  
pp. 3080
Author(s):  
Jinglei Zhang ◽  
Xiaoming Wang ◽  
Zishen Li ◽  
Shuhui Li ◽  
Cong Qiu ◽  
...  

Global navigation satellite systems (GNSSs) have become an important tool to derive atmospheric products, such as the total zenith tropospheric delay (ZTD) and precipitable water vapor (PWV) for weather and climate studies. The ocean tide loading (OTL) effect is one of the primary errors that affects the accuracy of GNSS-derived ZTD/PWV, which means the study and choice of the OTL model is an important issue for high-accuracy ZTD estimation. In this study, GNSS data from 1 January 2019 to 31 January 2019 are processed using precise point positioning (PPP) at globally distributed stations. The performance of seven widely used global OTL models is assessed and their impact on the GNSS-derived ZTD is investigated by comparing them against the ZTD calculated from co-located radiosonde observations. The results indicate that the inclusion or exclusion of the OTL effect will lead to a difference in ZTD of up to 3–15 mm for island stations, and up to 1–2 mm for inland stations. The difference of the ZTD determined with different OTL models is quite small, with a root-mean-square (RMS) value below 1.5 mm at most stations. The comparison between the GNSS-derived ZTD and the radiosonde-derived ZTD indicates that the adoption of OTL models can improve the accuracy of GNSS-derived ZTD. The results also indicate that the adoption of a smaller cutoff elevation, e.g., 3° or 7°, can significantly reduce the difference between the ZTDs determined by GNSS and radiosonde, when compared against a 15° cutoff elevation. Compared to the radiosonde-derived ZTD, the RMS error of GNSS-derived ZTD is approximately 25–35 mm at a cutoff elevation of 15°, and 15–25 mm when the cutoff elevation is set to 3°.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3631
Author(s):  
Junsheng Ding ◽  
Junping Chen

Tropospheric delay is one of the major error sources in GNSS (Global Navigation Satellite Systems) positioning. Over the years, many approaches have been devised which aim at accurately modeling tropospheric delays, so-called troposphere models. Using the troposphere data of over 16,000 global stations in the last 10 years, as calculated by the Nevada Geodetic Laboratory (NGL), this paper evaluates the performance of the empirical troposphere model GPT3, which is the latest version of the GPT (Global Pressure and Temperature) series model. Owing to the large station number, long time-span and diverse station distribution, the spatiotemporal properties of the empirical model were analyzed using the average deviation (BIAS) and root mean square (RMS) error as indicators. The experimental results demonstrate that: (1) the troposphere products of NGL have the same accuracy as the IGS (International GNSS Service) products and can be used as a reference for evaluating general troposphere models. (2) The global average BIAS of the ZTD (zenith total delay) estimated by GPT3 is −0.99 cm and the global average RMS is 4.41 cm. The accuracy of the model is strongly correlated with latitude and ellipsoidal height, showing obviously seasonal variations. (3) The global average RMS of the north gradient and east gradient estimated by GPT3 is 0.77 mm and 0.73 mm, respectively, which are strongly correlated with each other, with values increasing from the equator to lower latitudes and decreasing from lower to higher latitudes.


2020 ◽  
Vol 12 (17) ◽  
pp. 2744
Author(s):  
Nan Ding ◽  
Xiangrong Yan ◽  
Shubi Zhang ◽  
Suqin Wu ◽  
Xiaoming Wang ◽  
...  

Global Navigation Satellite Systems (GNSS) tomography plays an important role in the monitoring and tracking of the tropospheric water vapor. In this study, a new approach for improving the node-based GNSS tomography is proposed, which makes a trade-off between the real observed region and the complexity of the discretization of the tomographic region. To obtain dynamically the approximate observed region, the convex hull algorithm and minimum bounding box algorithm are used at each tomographic epoch. This new approach can dynamically define the tomographic model for all types of study areas based on the GNSS data. The performance of the new approach is tested by comparing it against the common node-based GNSS tomographic approach. Test data in May 2015 are obtained from the Hong Kong GNSS network to build the tomographic models and the radiosonde data as a reference are used for validating the quality of the new approach. The experimental results show that the root-mean-square errors of the new approach, in most cases, have a 38 percent improvement and the values of standard deviation reduce to over 43 percent compared with the common approach. The results indicate that the new approach is applicable to the node-based GNSS tomography.


Proceedings ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 24 ◽  
Author(s):  
Raquel Perdiguer-López ◽  
José Luis Berné-Valero ◽  
Natalia Garrido-Villén

A processing methodology with GNSS observations to obtain Zenith Tropospheric Delay using Bernese GNSS Software version 5.2 is revised in order to obtain Precipitable Water Vapor (PWV). The most traditional PWV observation method is the radiosonde and it is often used as a standard to validate those derived from GNSS. For this reason, a location in the north of Spain, in A Coruña, which has a GNSS station with available data and also a radiosonde station, was chosen. Two GPS weeks, in different weather conditions were calculated. The result of the comparison between the GNSS- retrieved PWV and Radiosonde-PWV is explained in the last section of this paper.


2011 ◽  
Vol 64 (S1) ◽  
pp. S211-S232 ◽  
Author(s):  
Lei Yang ◽  
Zeynep Elmas ◽  
Chris Hill ◽  
Marcio Aquino ◽  
Terry Moore

New signals from the modernised satellite navigation systems (GPS and GLONASS) and the ones that are being developed (COMPASS and GALILEO) will present opportunities for more accurate and reliable positioning solutions. Successful exploitation of these new signals will also enable the development of new markets and applications for difficult environments where the current Global Navigation Satellite Systems (GNSS) cannot provide satisfying solutions. This research is aiming to exploit the improvement in monitoring, modelling and mitigating the atmospheric effects using the increased number of signals from the future satellite systems. Preliminary investigations were conducted on the numerical weather parameter based horizontal tropospheric delay modelling, as well as the ionospheric higher order and scintillation effects. Results from this research are expected to provide a potential supplement to high accuracy positioning techniques.


2020 ◽  
Author(s):  
Zhilu Wu ◽  
Yanxiong Liu ◽  
Yang Liu ◽  
Jungang Wang ◽  
Xiufeng He ◽  
...  

Abstract. The calibration microwave radiometer (CMR) onboard Haiyang-2A satellite provides wet tropospheric delays correction for altimetry data, which can also contribute to the understanding of climate system and weather processes. Ground-based Global Navigation Satellite Systems (GNSS) provide precise PWV with high temporal resolution and could be used for calibration and monitoring of the CMR data, and shipborne GNSS provides accurate PWV over open oceans, which can be directly compared with uncontaminated CMR data. In this study, the HY-2A CMR water vapor product is validated using ground-based GNSS observations of 100 IGS stations along the coastline and 56-day shipborne GNSS observations over the Indian Ocean. The processing strategy for GNSS data and CMR data is discussed in detail. Special efforts were made to the quality control and reconstruction of contaminated CMR data. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV with 2.67 mm in RMS within 100 km. Geographically, the RMS is 1.12 mm in the polar region and 2.78 mm elsewhere. The PWV agreement between HY-2A and shipborne GNSS shows a significant correlation with the distance between the ship and the satellite footprint, with an RMS of 1.57 mm for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well with no obvious system error.


2017 ◽  
Author(s):  
Fadwa Alshawaf ◽  
Kyriakos Balidakis ◽  
Galina Dick ◽  
Stefan Heise ◽  
Jens Wickert

Abstract. Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we compare the temporal trends estimated from GNSS time series with those estimated from European Center for Medium-Range Weather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements. We aim at evaluating climate evolution in Germany by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim reanalysis data, and 3) determined based on daily in situ measurements of temperature and relative humidity. The other relevant atmospheric parameters are available from surface measurements of meteorological stations or derived from ERA-Interim. The trends are estimated using two methods, the first applies least squares to seasonally-adjusted time series and the second using the Theil-Sen estimator. The trends estimated at 113 GNSS sites, with 10 and 19 year temporal coverage, varies between −1.5 and 2 mm/decade with standard deviations below 0.25 mm/decade. These values depend on the length and the variations of the time series. Therefore, we estimated the PWV trends using ERA-Interim and surface measurements spanning from 1991 to 2016 (26 years) at synoptic 227 stations over Germany. The former shows positive PWV trends below 0.5 mm/decade while the latter shows positive trends below 0.9 mm/decade with standard deviations below 0.03 mm/decade. The estimated PWV trends correlate with the temperature trends.


2021 ◽  
Author(s):  
Nabila Putri ◽  
Johannes Boehm ◽  
Dudy D. Wijaya ◽  
Wedyanto Kuntjoro ◽  
Zamzam Tanuwijaya ◽  
...  

<p>The mean temperature weighted with water vapor pressure (Tm) is an important parameter to obtain precipitable water vapor (PWV) from the Global Navigation Satellite Systems (GNSS) observations. This study investigates the possible impacts of equatorial troposphere on Tm estimates and its relation with surface temperature Ts. We calculated Tm in Indonesia from a Numerical Weather Model at nine InaCORS sites. We used 3-hourly ERA5 pressure, temperature, and humidity profiles for the year 2019. We found that Tm and surface temperature Ts in Indonesia have low correlation, less than 0.4. Seasonal and site-specific Tm-Ts relationships have slightly higher correlation, although the values can vary significantly. The highest correlation of around 0.7 is found at site CPUT in Kalimantan. We calculated Tm at nine additional stations in Kalimantan and found that stations located farther from the coast tend to have higher correlation, independent of the seasons. This suggests that Tm is also influenced by the vicinity to the coast. Based on our findings, the use of a general Tm-Ts relationship in Indonesia may not be appropriate. Further studies are necessary to develop an improved Tm over Indonesian region.</p>


Sign in / Sign up

Export Citation Format

Share Document