scholarly journals Comparison Of Oxidation Resistance of TiAlN Monolayer Coating And Its NaCo3 Nanostructured Version

Author(s):  
Martin Sahul ◽  
Paulína Zacková ◽  
Ľubomír Čaplovič ◽  
Kristián Šalgó ◽  
Jana Bohovičová ◽  
...  

Abstract The contribution deals with comparison of oxidation resistance of classical TiAlN monolayer coating and its advanced high hard nanostructured and multilayered nACo3 version at elevated temperatures. Both coatings were deposited onto AISI M36 high speed steel using unique LAteral Rotating Cathodes process (LARC®). “In - situ” X-Ray diffraction analysis was employed for determination of the beginning of oxides creation and phase detection at different heating temperatures. Scanning electron microscopy fitted with EDX analysis was used for observation of fracture areas and measurements of coatings and oxide layers thicknesses as well. Determination of chemical composition of coatings surfaces and elemental linescans through the coatings and oxide layers were performed using EDX analysis. All measurements of these coatings were carried out not only before but also after the thermal annealing.

2005 ◽  
Vol 22 (6) ◽  
pp. 407-417 ◽  
Author(s):  
Manfred Wießner ◽  
Siegfried Kleber ◽  
Alfred Kulmburg

Alloy Digest ◽  
1980 ◽  
Vol 29 (8) ◽  

Abstract RED CUT COBALT steel is made by adding 5% cobalt to the conventional 18% tungsten -4% chromium-1% vanadium high-speed steel. Cobalt increases hot or red hardness and thus enables the tool to maintain a higher hardness at elevated temperatures. This steel is best adapted for hogging cuts or where the temperature of the cutting point of the tool in increased greatly. It is well adapted for tools to be used for reaming cast-iron engine cylinders, turning alloy steel or cast iron and cutting nonferrous alloys at high speeds. This datasheet provides information on composition, physical properties, and hardness as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-367. Producer or source: Teledyne Vasco.


Author(s):  
Lina Bai ◽  
Chunxiang Cui ◽  
Jianjun Zhang ◽  
Lichen Zhao ◽  
Guixing Zheng ◽  
...  

2021 ◽  
Author(s):  
Mei Yang ◽  
Yishu Zhang ◽  
Haoxing You ◽  
Richard Smith ◽  
Richard D. Sisson

Abstract Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.


2010 ◽  
Vol 66 ◽  
pp. 35-40 ◽  
Author(s):  
Erdem Baskurt ◽  
Tolga Tavşanoğlu ◽  
Yücel Onüralp

SiC films were deposited by reactive DC magnetron sputtering of high purity (99.999%) Si target. 3 types of substrates, AISI M2 grade high speed steel, glass and Si (100) wafer were used in each deposition. The effect of different CH4 flow rates on the microstructural properties and surface morphologies were characterized by cross-sectional FE-SEM (Field-Emission Scanning Electron Microscope) observations. SIMS (Secondary Ion Mass Spectrometer) depth profile analysis showed that the elemental film composition was constant over the whole film depth. XRD (X-Ray Diffraction) results indicated that films were amorphous. Nanomechanical properties of SiC films were also investigated.


2011 ◽  
Vol 239-242 ◽  
pp. 2331-2335 ◽  
Author(s):  
Fang Mei ◽  
Guang Zhou Sui ◽  
Man Feng Gong

TiN coatings were deposited on AISI M2 high-speed-steel (HSS) substrates by multi-arc ion plating technique. The thickness of substrate was 1.0 mm and five thicknesses of TiN coatings were 3.0, 5.0, 7.0, 9.0 and 11.0 μm, respectively. X-ray diffraction (XRD) has been used for measuring residual stresses. The stresses along five different directions (Ψ=0°, 20.7°, 30°, 37.8° and 45°) have been measured by recording the peak positions of TiN (220) reflection for each 2θ at different tilt angles Ψ. Residual compressive stresses present in the TiN coatings. Furthermore, the results revealed that the value of the residual stresses in TiN coatings was high. While the coatings thickness changed from 3 to 11 μm, the residual stresses varied from -3.22 to -2.04 GPa, the intrinsic stresses -1.32 to -0.14 GPa, the thermal stresses -1.86 to -1.75 GPa. The residual stresses in TiN coatings showed a nonlinear change. When the coatings thickness was about 8 μm, the residual stresses in TiN coatings reached to the maximum value.


CrystEngComm ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Siriyara Jagannatha Prathapa ◽  
Cara Slabbert ◽  
Manuel A. Fernandes ◽  
Andreas Lemmerer

In situ cryocrystallisation enabled the crystal structure determination of a homologous series of low-melting n-alkyl methyl esters Cn−1H2n+1CO2CH3.


Sign in / Sign up

Export Citation Format

Share Document