scholarly journals Characterization of the citrate precursor, used for synthesis of nanosized Mg-Zn ferrites

2009 ◽  
Vol 7 (3) ◽  
pp. 415-422 ◽  
Author(s):  
Violeta Kassabova-Zhetcheva

AbstractThe citrate precursor has been used to synthesize nanocrystalline Mg-Zn-ferrites. The nature of the prepared precursor is characterized and compared with those of the precursors studied earlier, prepared by the same process. The study has been performed by inorganic and organic elemental analyses, Fourier Transformed Infrared Spectroscopy (FTIR), Mössbauer spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Electron Paramagnetic Resonance (EPR), Electronic absorption spectrometry in the UV-VIS region, Differential Thermal analysis/ Thermogravimetry (DTA-TG) analyses, and X-ray diffraction (XRD) analysis. The collected results determined the precursor as a coordination polymer with monomer unit (NH4)4{M [Fe(C6H5O7)2]2}, where M=Zn or Mg.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1969
Author(s):  
Riccardo Scarfiello ◽  
Elisabetta Mazzotta ◽  
Davide Altamura ◽  
Concetta Nobile ◽  
Rosanna Mastria ◽  
...  

The surface and structural characterization techniques of three atom-thick bi-dimensional 2D-WS2 colloidal nanocrystals cross the limit of bulk investigation, offering the possibility of simultaneous phase identification, structural-to-morphological evaluation, and surface chemical description. In the present study, we report a rational understanding based on X-ray photoelectron spectroscopy (XPS) and structural inspection of two kinds of dimensionally controllable 2D-WS2 colloidal nanoflakes (NFLs) generated with a surfactant assisted non-hydrolytic route. The qualitative and quantitative determination of 1T’ and 2H phases based on W 4f XPS signal components, together with the presence of two kinds of sulfur ions, S22− and S2−, based on S 2p signal and related to the formation of WS2 and WOxSy in a mixed oxygen-sulfur environment, are carefully reported and discussed for both nanocrystals breeds. The XPS results are used as an input for detailed X-ray Diffraction (XRD) analysis allowing for a clear discrimination of NFLs crystal habit, and an estimation of the exact number of atomic monolayers composing the 2D-WS2 nanocrystalline samples.


1994 ◽  
Vol 368 ◽  
Author(s):  
M. Malaty ◽  
D. Singh ◽  
R. Schaeffer ◽  
S. Jansen ◽  
S. Lawrence

ABSTRACTStudies of the mixed-metal interface in metal impregnated alumina have indicated the possibility of much metal-metal and metal-substrate interaction. Studies were carried out on NiCu/Al2O3 system which was evaluated to develop a better understanding of the forces that drive modification of the catalytic selectivity of Ni in the presence of Cu. Electron Paramagnetic Resonance (EPR), Powder X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD) and theoretical calculations were carried out on this bimetallic system, using Ni,Ag/Al2O3 as a reference as Ni shows negligible electron perturbation on co-adsorbance with Ag onto alumina. XRD results indicate that gross modification of the electronic fields of Ni and Cu are due to direct coupling and intercalation into the alumina matrix. As a result of this phenomena, these materials may form a good base for the development of novel ceramics based on mixed-metal interactions where the intermetallic perturbations are driven by the substrate effects.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 86 ◽  
Author(s):  
Xiaoshuang Li ◽  
Zikun Chen ◽  
Bo Wang ◽  
Ruizhao Liang ◽  
Yongting Li ◽  
...  

Mn4+ activated LaMgAl11O19 (LMA/Mn4+) with red emitting phosphor was obtained by sintering under air conditioning. The X-ray diffraction pattern Rietveld refinement results reveal that three six-fold coordinated Al sites are substituted by Mn4+ ions. Furthermore, the chemical valence state of manganese in the LMA host was further confirmed through X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Photoluminescence emission (PL) and excitation (PLE) spectra of LMA/Mn4+ as well as the lifetime were measured, and the 663 nm emission is ascribed to the 2Eg→4A2g from the 3d3 electrons in the [MnO6]8− octahedral complex. The emission spectrum matches well with the absorption of phytochrome. Temperature-dependent PL spectra show that the color changes of the phosphor at 420 K are 0.0110 for Δx and −0.0109 for Δy. Moreover, doping Zn2+ and Mg2+ ions in the host enhances the emission intensity of Mn4+ ions. These results highlight the potential of LMA/Mn4+ phosphor for a light-emitting diode (LED) plant lamp.


2007 ◽  
Vol 124-126 ◽  
pp. 1229-1232 ◽  
Author(s):  
Myoung Seok Sung ◽  
Yoon Bok Lee ◽  
Yong Jin Kim ◽  
Yang Do Kim

Cadmium selenide(CdSe) nanoparticles were prepared in the aqueous solution containing isopropyl alcohol by the ultrasonic irradiation at room temperature. The cadmium chloride (CdCl2) and sodium selenosulfate (Na2SeSO3) were used as the cadmium and selenium source, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis absorption spectra and PL spectra were used to characterize the CdSe nanoparticles. XRD analysis revealed the formation of cubic structure CdSe. TEM images showed aggregated CdSe nanoparticles with the size of nanometer scale. Average size of CdSe nanoparticles were about 3.9, 5.0 and 5.1nm with sonication time of 6, 30 and 40 minutes, respectively. The surface emission became less intensive and shifted to red with increasing irradiation time. This paper presents the effects of ultrasonic on the formation of CdSe nanoparticles and its characteristics.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Patnamsetty Chidanandha Nagajyothi ◽  
Kisoo Yoo ◽  
Rajavaram Ramaraghavulu ◽  
Jaesool Shim

In this study, manganese tungstate (MW) and MW/graphene oxide (GO) composites were prepared by a facile hydrothermal synthesis at pH values of 7 and 12. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used for the structural, compositional, and morphological characterization of the nanoparticles (NPs). The XRD analysis revealed that the formation of monoclinic MnWO4 did not have impurities. The SEM and TEM analyses showed that the synthesized NPs were rod-shaped and well-distributed on the GO. The as-synthesized samples can be used as electrocatalysts for the urea oxidation reaction (UOR). The MW@GO-12 electrocatalyst exhibited higher current density values compared to other electrocatalysts. This study provides a new platform for synthesizing inexpensive nanocomposites as promising electrocatalysts for energy storage and conversion applications.


Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 466
Author(s):  
Loisangela Álvarez ◽  
Blanca Rojas de Gascue ◽  
Rolando J. Tremont ◽  
Edgar Márquez ◽  
Euclides J. Velazco

A new compound, Bi2O2CO3:Al, was synthesized by the coprecipitation method. The characterization was done by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electronic scanning microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The characterization methods allowed to identify the Bi2O2CO3:Al compound, such as the Al-doped Bi2O2CO3 by XRD, the anionic part (CO32−) by FTIR, and the presence of aluminum in the compound by XPS and EDX. It was confirmed to have a nanostructure like a nanosheet and a microstructure that resembles a type sponge by SEM.


2019 ◽  
Vol 10 ◽  
pp. 9-21 ◽  
Author(s):  
Florian Dumitrache ◽  
Iuliana P Morjan ◽  
Elena Dutu ◽  
Ion Morjan ◽  
Claudiu Teodor Fleaca ◽  
...  

Zn/F co-doped SnO2 nanoparticles with a mean diameter of less than 15 nm and a narrow size distribution were synthesized by a one-step laser pyrolysis technique using a reactive mixture containing tetramethyltin (SnMe4) and diethylzinc (ZnEt2) vapors, diluted Ar, O2 and SF6. Their structural, morphological, optical and electrical properties are reported in this work. The X-ray diffraction (XRD) analysis shows that the nanoparticles possess a tetragonal SnO2 crystalline structure. The main diffraction patterns of stannous fluoride (SnF2) were also identified and a reduction in intensity with increasing Zn percentage was evidenced. For the elemental composition estimation, energy dispersion X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) measurements were performed. In general, both analyses showed that the Zn percentage increases with increasing ZnEt2 flow, accompanied at the same time by a decrease in the amount of F in the nanopowders when the same SF6 flow was employed. The Raman spectra of the nanoparticles show the influence of both Zn and F content and crystallite size. The fluorine presence is due to the catalytic partial decomposition of the SF6 laser energy transfer agent. In direct correlation with the increase in the Zn doping level, the bandgap of co-doped nanoparticles shifts to lower energy (from 3.55 to 2.88 eV for the highest Zn dopant concentration).


2016 ◽  
Vol 36 (9) ◽  
pp. 867-875 ◽  
Author(s):  
Hongyan Li ◽  
Weian Wang ◽  
Lin Cheng ◽  
Jing Li ◽  
Yajing Li ◽  
...  

Abstract Graphene oxide (GO) was prepared by the Hummers method and was grafted by an amino-terminated vinyl polydimethylsiloxane (AP). The AP-modified GO (GO-AP) was incorporated in poly(methylmethacrylate) (PMMA) to prepare nanocomposites. Raman microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis were used to characterize the particles. The mechanical properties, thermal stability, thermal conductivity, and dispersing status of the PMMA-based nanocomposites were also investigated. The results indicated that AP was grafted on the surface of GO via the amidation reaction, and the quantity of the grafted AP was approximately 20 wt% that of GO-AP. With the addition of GO-AP, the three-point bending strength of GO-AP/PMMA increased to approximately 58 MPa, and the dispersion of the particles was also enhanced. GO wrapped by AP could not form thermal conducting networks at the percolation thresholds. The increasing amount of AP prevented the formation of thermal conduction network and decreased the thermal conductivity of the composites. The thermal stability of the composites was affected by three main reasons, and the total effect of the three reasons on thermal stability illustrated a negative trend.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 434
Author(s):  
Young-Jae Lee ◽  
Michael A. Schweitz ◽  
Jong-Min Oh ◽  
Sang-Mo Koo

Ga2O3/4H-SiC n-n isotype heterojunction diodes were fabricated by depositing Ga2O3 thin films by RF magnetron sputtering. The influence of annealing atmosphere on the film quality and electrical properties of Ga2O3 layers was investigated. X-ray diffraction (XRD) analysis showed a significant increase in the peak intensities of different faces of β-Ga2O3 {(−201), (−401) and (002)}. X-ray photoelectron spectroscopy (XPS) measurement showed that the atomic ratio of oxygen increases under high-temperature annealing. Moreover, an N2-annealed diode exhibited a greater rectifying ratio and a lower thermal activation energy owing to the decrease in oxygen-related traps and vacancies on the Ga2O3 film and Ga2O3–metal interface.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 695 ◽  
Author(s):  
Ramesh P. Sivasankaran ◽  
Nils Rockstroh ◽  
Carsten R. Kreyenschulte ◽  
Stephan Bartling ◽  
Henrik Lund ◽  
...  

MoS2/C3N4 (MS-CN) composite photocatalysts have been synthesized by three different methods, i.e., in situ-photodeposition, sonochemical, and thermal decomposition. The crystal structure, optical properties, chemical composition, microstructure, and electron transfer properties were investigated by X-ray diffraction, UV-vis diffuse reflectance spectroyscopy, X-ray photoelectron spectroscopy, electron microscopy, photoluminescence, and in situ electron paramagnetic resonance spectroscopy. During photodeposition, the 2H MoS2 phase was formed upon reduction of [MoS4]2− by photogenerated conduction band electrons and then deposited on the surface of CN. A thin crystalline layer of 2H MoS2 formed an intimate interfacial contact with CN that favors charge separation and enhances the photocatalytic activity. The 2H MS-CN phase showed the highest photocatalytic H2 evolution rate (2342 μmol h−1 g−1, 25 mg catalyst/reaction) under UV-vis light irradiation in the presence of lactic acid as sacrificial reagent and Pt as cocatalyst.


Sign in / Sign up

Export Citation Format

Share Document