scholarly journals Aquatic Macrophyte Communities of the Gorgova-Isac-Uzlina Area (Danube Delta, Romania)

2018 ◽  
Vol 20 (3) ◽  
pp. 39-56
Author(s):  
Erika Schneider-Binder

Abstract With its diversity of water body types, the Danube Delta offers large possibilities for studies of aquatic macrophytes, their ecological requirements, ecological amplitude and communities. Sensitive to changes in water quality and physical parameters due to human intervention in the natural ecological network, aquatic macrophytes are used as quality indicators. Using the example of the system of channels and lakes of the Gorgova-Isac-Uzlina complex and some examples from the neighboring area, the aquatic macrophytes and their communities are presented and discussed in relation to the characteristics of the habitats and the changes of the environment in the course of decades, since human intervention in the delta.

2019 ◽  
Vol 70 (10) ◽  
pp. 3678-3680
Author(s):  
Alina Cochiorca ◽  
Narcis Barsan ◽  
Florin Marian Nedeff ◽  
Ion Sandu ◽  
Emilian Florin Mosnegutu ◽  
...  

This paper presents a study on assessment of water quality. According to a study, mining activities have a significant impact on water quality (lakes, surface water and groundwater), which has become a major problem globally. Due to mining and exploitation processes, lakes can be formed around these mines. Also, these lakes have been formed around the world and are steadily increasing. The purpose of this study is to watch the quality of water from the area around mining activities. This study refers to the, Groapa Burlacu lake around the mining exploitation Targu Ocna, Romania. This lake was formed on the northern bottle of the massive salt, strongly affected by the underground activities. Sampling for the determination the concentrations of Cl- and NaCl from the studied area was made at different depths (0 m, -5 m, -10 m, -15 m, -20 m, -25 m, -30 m, -35 m -40 m). Besides these concentrations, physical parameters of the water (pH, turbidity, electrical conductivity, dissolved oxygen and temperature) were also measured. To determine the physical parameters in the monitored area, sampling was done from four different points of the area and then put together for analysis. These parameters were measured on site using portable equipment. The data on the analyzed concentrations indicate that at depths of less than 5.0 m, the NaCl concentration values are more than 250 g/L.


1989 ◽  
Vol 21 (12) ◽  
pp. 1821-1824
Author(s):  
M. Suzuki ◽  
K. Chihara ◽  
M. Okada ◽  
H. Kawashima ◽  
S. Hoshino

A computer program based on expert system software was developed and proposed as a prototype model for water management to control eutrophication problems in receiving water bodies (Suzuki etal., 1988). The system has several expert functions: 1. data input and estimation of pollution load generated and discharged in the river watershed; 2. estimation of pollution load run-off entering rivers; 3. estimation of water quality of receiving water bodies, such as lakes; and 4. assisting man-machine dialog operation. The program can be used with MS-DOS BASIC and assembler in a 16 bit personal computer. Five spread sheets are utilized in calculation and summation of the pollutant load, using multi-windows. Partial differential equations for an ecological model for simulation of self-purification in shallow rivers and simulation of seasonal variations of water quality in a lake were converted to computer programs and included in the expert system. The simulated results of water quality are shown on the monitor graphically. In this study, the expert system thus developed was used to estimate the present state of one typical polluted river basin. The river was the Katsura, which flows into Lake Sagami, a lake dammed for water supply. Data which had been actually measured were compared with the simulated water quality data, and good agreement was found. This type of expert system is expected to be useful for water management of a closed water body.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1955
Author(s):  
Mingxi Zhang ◽  
Guangzhi Rong ◽  
Aru Han ◽  
Dao Riao ◽  
Xingpeng Liu ◽  
...  

Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.


2021 ◽  
Vol 1751 ◽  
pp. 012067
Author(s):  
Junaidi ◽  
T M Putra ◽  
A Surtono ◽  
G A Puazi ◽  
S W Suciyati ◽  
...  

2012 ◽  
Vol 63 (9) ◽  
pp. 788 ◽  
Author(s):  
N. E. Pettit ◽  
T. D. Jardine ◽  
S. K. Hamilton ◽  
V. Sinnamon ◽  
D. Valdez ◽  
...  

The present study indicates the critical role of hydrologic connectivity in floodplain waterholes in the wet–dry tropics of northern Australia. These waterbodies provide dry-season refugia for plants and animals, are a hotspot of productivity, and are a critical part in the subsistence economy of many remote Aboriginal communities. We examined seasonal changes in water quality and aquatic plant cover of floodplain waterholes, and related changes to variation of waterhole depth and visitation by livestock. The waterholes showed declining water quality through the dry season, which was exacerbated by more frequent cattle usage as conditions became progressively drier, which also increased turbidity and nutrient concentrations. Aquatic macrophyte biomass was highest in the early dry season, and declined as the dry season progressed. Remaining macrophytes were flushed out by the first wet-season flows, although they quickly re-establish later during the wet season. Waterholes of greater depth were more resistant to the effects of cattle disturbance, and seasonal flushing of the waterholes with wet-season flooding homogenised the water quality and increased plant cover of previously disparate waterholes. Therefore, maintaining high levels of connectivity between the river and its floodplain is vital for the persistence of these waterholes.


Author(s):  
Cristina Despina ◽  
Liliana Teodorof ◽  
Adrian Burada ◽  
Daniela Seceleanu-Odor ◽  
Iuliana-Mihaela Tudor ◽  
...  

2000 ◽  
Vol 60 (1) ◽  
pp. 83-92 ◽  
Author(s):  
A. F. M. CAMARGO ◽  
E. R. FLORENTINO

In this paper we evaluated the population dynamics and obtained estimates of the net primary production of the aquatic macrophyte Nymphaea rudgeana in an arm of the Itanhaém River (São Paulo State, Brazil). This species presents, in the studied area, a broad seasonal variation of biomass. As from November (13.1 g DW/m²) we observed a gradual increase of biomass that reached a maximum in February (163.1 g DW/m²). Then, the biomass decreased, maintaining low levels until a new growth period. The reduction of biomass is associated to the development of floating aquatic macrophytes (Pistia stratiotes and Salvinia molesta) and, subsequently to environmental factors (higher salinity values) that are unfavorable to their development. The net primary production of N. rudgeana was estimated from the biomass data, and the annual productivity value was estimated between 3.02 and 3.82 t/ha/year.


2017 ◽  
Vol 9 (1) ◽  
pp. 57
Author(s):  
Aprizon Putra ◽  
Semeidi Husrin

<p><em>Kuta Beach of Bali is one of the top tourist destination for a vacation in Bali Island.</em><em> </em><em>The beauty of the beach with white sand,</em><em> </em><em>ocean waves are excellent for surfing,</em><em> </em><em>sunset, and tourism infrastructure which detailed makes very famous Kuta beach to foreign countries.</em><em> </em><em>However,</em><em> </em><em>in recent years the beauty of Kuta beach which has become an icon of tourism in Bali began plagued by high levels of contaminant of the marine debris on the beach,</em><em> </em><em>mainly contamination of the marine debris that often accumulate in Kuta beach every season West. The purpose of this study was to determine the condition of water quality based the quality standards of sea water KMNLH Number 51 Years 2004 post contamination of the marine debris that occurred in the Kuta beach of Bali. The method used is to perform measurements using a </em><em>"</em><em>Water Quality Checker</em><em>"</em><em> at 8 measuring stations.</em><em> Water quality parameters which measured, namely physical parameters (temperature, turbidity) and chemical parameters (pH, salinity, DO).</em><em> The results showed a temperature with the range of value 29.10-29.40°C,</em><em> </em><em>turbidity with the value range </em><em>0.30-18.70 NTU</em><em>, pH</em><em> </em><em>with the value range 8.10-8.15 </em><em>DO</em><em> with the value range </em><em>6.85-7.38 mg/L</em><em> and</em><em> salinity</em><em> with the value range </em><em>30.6</em><em>0</em><em>-30.9</em><em>0</em><em>%<sub>o</sub></em><em>.</em><em> Based on the measurement data obtained indicates conditions of the waters chemistry of still suitable </em><em>and condition of the waters physical showed the value of the temperature is still </em><em>suitable</em><em>, except the turbidity value shows the value does not suitable in the station 1, 2 and 8.</em></p><p><em> </em></p><strong><em>Keywords:</em></strong><em> Bali, water quality, Kuta Beach, marine debris</em>


In this paper three sustainable approaches are made in waste management option. Firstly primary treated domestic sewage is treated by aquatic macrophytes using duckweed, water hyacinth and water lettuce. Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Phosphate, Nitrates are tested before and after. Result indicates in terms of water quality, almost all three plants shows same removal efficiencies. BOD and TSS removal efficiency is attained more than 95%. COD and TDS removal is reached upto 50% for almost all plants. Secondly the used aquatic macrophytes for wastewater treatment is again used for generation of biogas (water lettuce unit, duckweed unit, water lettuce unit). In addition to three aquatic macrophytes, sludge is collected from aquatic macrophyte unit for generation of biogas. Comparison is made with conventional cow dung biogas unit. Result indicates water lettuce and duckweed produce biogas at earlier stage itself and water hyacinth takes some time for starting of biogas production. This may be due to the structure and texture causes some time for decomposition. Sludge gives maximum biogas generation among all experimental setup. Also in this study cow dung did not give biogas more may be due to poor blend ratio of cow dung with water is one of the reason.


Sign in / Sign up

Export Citation Format

Share Document