scholarly journals Solid dispersion of meloxicam: Factorially designed dosage form for geriatric population

2008 ◽  
Vol 58 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Deepa Pathak ◽  
Sunita Dahiya ◽  
Kamla Pathak

Solid dispersion of meloxicam: Factorially designed dosage form for geriatric populationThe objective of the present work was to improve the dissolution properties of the poorly water-soluble drug meloxicam by preparing solid dispersions with hydroxyethyl cellulose (HEC), mannitol and polyethylene glycol (PEG) 4000 and to develop a dosage form for geriatric population. Differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy and scanning electron microscopy were used to investigate the solid-state physical structure of the prepared solid dispersions. Higher invitrodissolution of solid dispersions was recorded compared to their corresponding physical mixtures and the pure drug. PEG 4000 in 1: 9 drug to carrier ratio exhibited the highest drug release (100.2%), followed by mannitol (98.2%) and HEC (89.5%) in the same ratio. Meloxicam-PEG 4000 solid dispersion was formulated into suspension and optimization was carried out by 23factorial design. Formulations containing higher levels of methyl cellulose and higher levels of either sodium citrate or Tween 80 exhibited the highest drug release.

2016 ◽  
Vol 52 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ehsan Adeli

ABSTRACT Azithromycin is a water-insoluble drug, with a very low bioavailability. In order to increase the solubility and dissolution rate, and consequently increase the bioavailability of poorly-soluble drugs (such as azithromycin), various techniques can be applied. One of such techniques is "solid dispersion". This technique is frequently used to improve the dissolution rate of poorly water-soluble compounds. Owing to its low solubility and dissolution rate, azithromycin does not have a suitable bioavailability. Therefore, the main purpose of this investigation was to increase the solubility and dissolution rate of azithromycin by preparing its solid dispersion, using different Polyethylene glycols (PEG). Preparations of solid dispersions and physical mixtures of azithromycin were made using PEG 4000, 6000, 8000, 12000 and 20000 in various ratios, based on the solvent evaporation method. From the studied drug release profile, it was discovered that the dissolution rate of the physical mixture, as the well as the solid dispersions, were higher than those of the drug alone. There was no chemical incompatibility between the drug and polymer from the observed Infrared (IR) spectra. Drug-polymer interactions were also investigated using Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD) and Scanning Election Microscopy (SEM). In conclusion, the dissolution rate and solubility of azithromycin were found to improve significantly, using hydrophilic carriers, especially PEG 6000.


2021 ◽  
Vol 9 (2) ◽  
pp. 127-135
Author(s):  
Anil Raosaheb Pawar ◽  
Pralhad Vitthalrao Mundhe ◽  
Vinayak Kashinath Deshmukh ◽  
Ramdas Bhanudas Pandhare ◽  
Tanaji Dilip Nandgude

The aim of the present study was to formulate solid dispersion (SD) of Mesalamine to enrich the aqueous solubility and dissolution rate. Mesalamine is used in the management of acute ulcerative colitis and for the prevention of relapse of active ulcerative colitis. In the present study, Solid dispersion of Mesalamine was prepared by Fusion and Solvent evaporation method with different polymers. SD’s were characterized by % practical yield, drug content, Solubility, FT-IR, PXRD (Powder X- ray diffractometry), SEM (Scanning electron microscopy), in vitro dissolution studies and Stability studies. The percent drug release of prepared solid dispersion of Mesalamine by fusion and solid dispersion method (FM47, FM67, SE47 and SE67) in 1:7 ratio was found 81.36±0.41, 86.29±0.64, 82.45±0.57and 87.25±1.14 respectively. The aqueous solubility and percent drug release of solid dispersion of Mesalamine by both methods was significantly increased. The PXRD demonstrated that there was a significant decrease in crystallinity of pure drug present in the solid dispersions, which resulted in an increased aqueous solubility and dissolution rate of Mesalamine.The significant increase in aqueous solubility and dissolution rate of Mesalamine was observed in solid dispersion as the crystallinity of the drug decreased, absence of aggregation and agglomeration, increased wetability and good dispersibility after addition of PEG 4000 and PEG 6000.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 407
Author(s):  
Sooho Yeo ◽  
Jieun An ◽  
Changhee Park ◽  
Dohyun Kim ◽  
Jaehwi Lee

This study aimed to improve the solubility and dissolution of aprepitant, a drug with poor aqueous solubility, using a phosphatidylcholine (PC)-based solid dispersion system. When fabricating the PC-based solid dispersion, we employed mesoporous microparticles, as an adsorbent, and disintegrants to improve the sticky nature of PC and dissolution of aprepitant, respectively. The solid dispersions were prepared by a solvent evaporation technique and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and X-ray powder diffraction. The FTIR results showed that aprepitant interacted with the PC carrier by both hydrogen bonds and van der Waals forces that can also be observed in the interaction between aprepitant and polymer carriers. The solid dispersions fabricated with only PC were not sufficient to convert the crystallinity of aprepitant to an amorphous state, whereas the formulations that included adsorbent and disintegrant successfully changed that of aprepitant to an amorphous state. Both the solubility and dissolution of aprepitant were considerably enhanced in the PC-based solid dispersions containing adsorbent and disintegrant compared with those of pure aprepitant and polymer-based solid dispersions. Therefore, these results suggest that our PC-based solid dispersion system is a promising alternative to conventional formulations for poorly water-soluble drugs, such as aprepitant.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3587
Author(s):  
Melissa Everaerts ◽  
Ali Tigrine ◽  
Victor R. de la Rosa ◽  
Richard Hoogenboom ◽  
Peter Adriaensens ◽  
...  

Water-soluble polymers are still the most popular carrier for the preparation of amorphous solid dispersions (ASDs). The advantage of this type of carrier is the fast drug release upon dissolution of the water-soluble polymer and thus the initial high degree of supersaturation of the poorly soluble drug. Nevertheless, the risk for precipitation due to fast drug release is a phenomenon that is frequently observed. In this work, we present an alternative carrier system for ASDs where a water-soluble and water-insoluble carrier are combined to delay the drug release and thus prevent this onset of precipitation. Poly(2-alkyl-2-oxazoline)s were selected as a polymer platform since the solution properties of this polymer class depend on the length of the alkyl sidechain. Poly(2-ethyl-2-oxazoline) (PEtOx) behaves as a water-soluble polymer at body temperature, while poly(2-n-propyl-2-oxazoline) (PPrOx) and poly(2-sec-butyl-2-oxazoline) (PsecBuOx) are insoluble at body temperature. Since little was known about the polymer’s miscibility behaviour and especially on how the presence of a poorly-water soluble drug impacted their miscibility, a preformulation study was performed. Formulations were investigated with X-ray powder diffraction, differential scanning calorimetry (DSC) and solid-state nuclear magnetic resonance spectroscopy. PEtOx/PPrOx appeared to form an immiscible blend based on DSC and this was even more pronounced after heating. The six drugs that were tested in this work did not show any preference for one of the two phases. PEtOx/PsecBuOx on the other hand appeared to be miscible forming a homogeneous blend between the two polymers and the drugs.


2002 ◽  
Vol 70 (3) ◽  
pp. 309-316
Author(s):  
Okonogi S ◽  
Sirithunyalung J ◽  
Sirithunyalig B ◽  
Wolschann P ◽  
Viernstein H

Solid dispersions of ofloxacin (OFX) and of a number of carriers including chitosan and the water soluble polymers polyethylene glycol (PEG) 4000, PEG 20000, and polyvinylpyrrolidone K- 90 were prepared by solvent evaporation method in order to increase the dissolution of the drug. The solid dispersions were subjected to X-ray diffraction, DSC, and dissolution to characterize their physicochemical and dissolution properties. The results demonstrated a decrease in drug crystallinity at higher amounts of carrier. Dissolution studies indicated that the dissolution rate of OFX was markedly increased in these solid dispersion systems compared with the pure drug. The results also showed that the increase in dissolution rate was higher when the weight fraction of carriers increased. An influence of molecular weight of PEG on OFX dissolution could also be observed. In solid dispersion with 1:9 ratio drug to carrier, PEG 4000 gave highest drug dissolution rate, whereas in 1:1 ratio, chitosan seems to be the best carrier for drug release. It was concluded that chitosan might be the carrier of choice for dissolution enhancement in solid dispersions with high content of drug.


2021 ◽  
Vol 9 (12) ◽  
pp. 363-369
Author(s):  
Ayesha Naz ◽  
◽  
Syeda Kulsum ◽  
Mehraj Begum ◽  
Mohammed Omer ◽  
...  

Objective: The research aims to formulate and evaluate Solid Dispersion tablets of Silymarin. Methods: Solid dispersions of Silymarin were prepared with various concentrations of carriers by using solvent evaporation method. The prepared solid dispersions were compressed into tablets by using 8 mm punch rotary tablet punching machine, with the hardness of 3.5kg /cm2.The formulated tablets were evaluated for various quality control parameters. Results: Silymarin was mixed with various proportions of excipients which showed no drug-excipients interactions. The precompression blend of Silymarin solid dispersions were characterized with respect to angle of repose, bulk density, tapped density, Carrs index and Hausners ratio. The precompression blend of all the batches indicated good to fair flowability and compressibility. Conclusion: The tablet passed all the tests. Among all the formulations F4 formulation containing, Drug and PEG 4000 in the ratio of 1:4 showed good result that is 94.95 % in 60 minutes. As the concentration of polymer increased the drug release was increased. While the formulations containing PEG 6000 showed less release. Hence from the dissolution data it was evident that F4 formulation is the better formulation.


2017 ◽  
Vol 9 (3) ◽  
pp. 52
Author(s):  
Mumini A Momoh ◽  
Calister E Ugwu ◽  
Tenderwealth Clement Jackson ◽  
Ngumezi C Udodiri

<p>Metformin is a hydrophilic hypoglycemic agent with permeability and short half-life problems which leads to its low bioavailability. Solid dispersion is one of the unique approaches, to improve bioavailability profiles of drugs. The aim of this study was to prepare and evaluate solid dispersions (SDs) of metformin with polyethylene glycol 4000 (PEG 4000) and Gelucire®50/13 in order to increase its permeability and bioavailability. Solid dispersions of Metformin containing various ratios of PEG 4000: Gelucire®50/13 (1:1, 1:2, 2:1, 1:4, 4:1 as Batch A, Batch B, Batch C, Batch D and Batch E) were prepared using solvent evaporation and fusion techniques. The physical mixtures which served as controls were also prepared. The SDs were evaluated using encapsulation efficiency, percentage yield. The formulations were also characterized with FTIR and DSC. The in vitro drug release studies were also evaluated. The results obtained showed that solid dispersion formulations at pH, 1.2 and 7.4 demonstrated higher release rates than the pure drug. The SDs showed high drug release rates and encapsulation efficiency (% EE) although Batch C containing PEG 4000 and Gelucire 50/13 in the ratio of 2:1 appeared as the batch with most % EE, drug release with broad melting peak. The release rate of metformin increased with increasing amount of PEG 4000. Batch C, SDs containing PEG 4000 and Gelucire 50/13 in the ratio of 2:1 were found to be the most optimized batch with enhanced encapsulation efficiency, most drug release and therefore, improved permeability and bioavailability of metformin.</p>


2021 ◽  
Vol 10 (3) ◽  
pp. 2929-2932
Author(s):  
Sachin N Kothawade

Spray drying methods were used to make solid dispersions of the medication Eprosartan Mesylate, which is poorly water-soluble. X-ray Powder diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry were used to characterize the products' physicochemical features as well as drug-polymer interactions. Eprosartan Mesylate was shown to be dispersed amorphously in both solid dispersion systems, with a drug to polymer weight ratio of 1:4.The drug and polymer created hydrogen bonds, according to the spectrum data. Both techniques utilized in this investigation enhanced Eprosartan Mesylate solubility. Solid dispersions, on the other hand, performed significantly better, dissolving completely in 5 minutes and at a rate that was about 20 times faster than API within the first 15 minutes. Spray drying is a good way to boost the bioavailability of drugs that are poor water solubility.


Author(s):  
V. Namitha

Tablet is found to be the most popular dosage form among all existing dosage form. However, in certain occurrences as a result of the huge size of dosage forms, and in the uncooperative, pediatric and dysphasia patients, it might make a few problems, to avoid this issues, another type of dosage form is created, which is known as fast dissolving tablet or mouth dissolving tablet. These are the high level dosage form which breaks down within seconds when placed on the toungue. Mouth dissolving tablets have become impressive consideration as a better option in contrast to others because of better convenience to patients. This review discusses the method of preparation, properties, mechanisms; capsules to be incorporated inside the mouth dissolving pill and evaluation of the drugs are emphasized. The solid dispersion is one of the established solubilization techniques for poorly water-soluble drugs. It is basically the interaction between drug and polymer, and hence it is found to be the determining factor in its design and performance. This review additionally summarizes our knowledge on solid dispersions both in the solid as well as liquid state.


Author(s):  
S. Kaushik ◽  
Kamla Pathak

<p><strong>Objective: </strong>The aim of the present study was to develop and evaluate the monolithic osmotic tablet (MOT) composed of the solid dispersion of ketoprofen (KETO), a poorly water-soluble drug. Solid dispersion technique is generally used for immediate release, as this maximizes the amount of drug absorbed. Sustained release may be obtained by combining solid dispersion technique with MOT so as to increase the therapy efficacy and patient compliance.</p><p><strong>Methods: </strong>Solid dispersion of KETO was prepared by using solvent melt method with polyethylene glycol (PEG) 6000, a hydrophilic carrier. The ratio of KETO to PEG 6000 were 1:1, 1:3 and 1:5 (%w/w). These solid dispersions were characterized by differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA) and powder X-ray diffraction (PXRD) to ascertain whether there were any physicochemical interactions between drug and carrier.</p><p>The tablet core was prepared by using Polyox N80 (a suspending agent), sodium chloride (an osmotic agent), a solid dispersion consisting of PEG 6000 and KETO followed by a coating of cellulose acetate to make the monolithic osmotic tablet.</p><p><strong>Results: </strong>The results of DSC and PXRD indicated that the drug was in the amorphous state in solid dispersion when PEG 6000 was used as a carrier. The dissolution rate of the solid dispersion was much faster than those for the corresponding physical mixture and pure drug. The optimized MOT formulations were able to deliver KETO at the constant zero order release, above 95% <em>in vitro</em>, independent to environmental media and stirring rate. The release rate of KETO in the MOT is controlled by osmotic pressure, suspending agent and drug solubility in solid dispersion.</p><p><strong>Conclusion: </strong>The monolithic osmotic tablet containing solid dispersion has great potential in the controlled delivery of ketoprofen, a water-insoluble drug.</p><p><strong>Keywords: </strong>Ketoprofen, Monolithic osmotic tablet, Solid dispersion, Water insoluble</p>


Sign in / Sign up

Export Citation Format

Share Document