scholarly journals Colorimetry-based System for Gaseous Carbon Dioxide Detection

2020 ◽  
Vol 6 (2) ◽  
pp. 59-69
Author(s):  
João Mendes ◽  
Luís Coelho ◽  
Carlos Manuel De Melo Pereira ◽  
Pedro Jorge

The study of sensing materials to the detection of carbon dioxide (CO2) was achieved using p-nitrophenol (pNPh) as a colorimetric indicator. The sensing material was polymerized (NPLn), functionalized with 3-triethoxysilyl propyl isocyanate (IPTES) which sensitivity was tested in the form of a membrane as is and encapsulated in hollow silica nanoparticles. The sensing membranes were tested in a closed gas system comprising very precise flow controllers to deliver different concentrations of CO2 (vs. N2). The combination of the sensing membranes with multimode optical fibers and a dual-wavelength diode (LED) allows the measurement of the CO2 through the analysis of the induced absorbance changes with a self-referenced ratiometric scheme. The analysis of the sensing materials have shown significant changes in their chemical and physical properties and the results attest these materials with a strong potential for assessing CO2 dynamics in environmental, medical, and industrial applications.

2001 ◽  
Author(s):  
Y. H. Zheng ◽  
R. S. Amano

Abstract An efficient enhancement of the carbonation rate in the bottle filling stage can substantially increase the production in beverage industries. The bottle filling system currently used in most of the manufacturers can still be improved for a better performance of carbonation by designing the injection tube system. This paper reports on an experimental and numerical mass transfer modeling that can simulate the dissolution process of gaseous carbon dioxide into aqueous water in the bottle filler system. In order to establish the operating characteristics of the bottle filler system, an ordinary tap water and pure carbon dioxide were used as the liquid-gas system. The two-phase numerical modeling was developed that can serve as a framework for the continuous improvement of the design of the carbonation process in the bottle filler system. For an optimal design of CO2 injection tube and flow conditions, a computational fluid dynamics (CFD) approach is one of the most power tools. However, since only limited experimental data are available in the open literature to verify the computational results, an experiment study was performed to obtain measurements of CO2 level, temperature, and pressure during the carbonation process in the bottle filled with liquid. Both experimental and numerical studies of various flow condition and different sizes of injection tube are presented in this paper.


2000 ◽  
Author(s):  
Y. H. Zheng ◽  
R. S. Amano

Abstract This paper summarizes the mass transfer modeling that can simulate the process of gaseous carbon dioxide dissolution into water in an orifice mixing system. In order to establish the operating characteristics of the orifice mixing system, ordinary tap water and pure carbon dioxide were used as the liquid-gas system. Using the model, computations were performed for an orifice mixing system to better understand the mass transfer process of gaseous carbon dioxide into water through both the elbow tube and the junction Venturi-tube. All computed results show different performance of the carbon dioxide dissolution rates for the given inlet water and carbon dioxide conditions of the four different designs of the junction type Venturi-tubes and an orifice mixing system. After examining the computed results it was found that the mass transfer efficiency of gaseous carbon dioxide into the water stream through the orifice mixing system was superior to that through the junction Venturi-tubes.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2251
Author(s):  
Marwan Y. Rezk ◽  
Jyotsna Sharma ◽  
Manas Ranjan Gartia

The detection of carbon dioxide (CO2) is critical for environmental monitoring, chemical safety control, and many industrial applications. The manifold application fields as well as the huge range of CO2 concentration to be measured make CO2 sensing a challenging task. Thus, the ability to reliably and quantitatively detect carbon dioxide requires vastly improved materials and approaches that can work under different environmental conditions. Due to their unique favorable chemical, optical, physical, and electrical properties, nanomaterials are considered state-of-the-art sensing materials. This mini-review documents the advancement of nanomaterial-based CO2 sensors in the last two decades and discusses their strengths, weaknesses, and major applications. The use of nanomaterials for CO2 sensing offers several improvements in terms of selectivity, sensitivity, response time, and detection, demonstrating the advantage of using nanomaterials for developing high-performance CO2 sensors. Anticipated future trends in the area of nanomaterial-based CO2 sensors are also discussed in light of the existing limitations.


2020 ◽  
Vol 12 (16) ◽  
pp. 2570
Author(s):  
Shuaibo Wang ◽  
Ju Ke ◽  
Sijie Chen ◽  
Zhuofan Zheng ◽  
Chonghui Cheng ◽  
...  

As one of the most influential greenhouse gases, carbon dioxide (CO2) has a profound impact on the global climate. The spaceborne integrated path differential absorption (IPDA) lidar will be a great sensor to obtain the columnar concentration of CO2 with high precision. This paper analyzes the performance of a spaceborne IPDA lidar, which is part of the Aerosol and Carbon Detection Lidar (ACDL) developed in China. The line-by-bine radiative transfer model was used to calculate the absorption spectra of CO2 and H2O. The laser transmission process was simulated and analyzed. The sources of random and systematic errors of IPDA lidar were quantitatively analyzed. The total systematic errors are 0.589 ppm. Monthly mean global distribution of relative random errors (RREs) was mapped based on the dataset in September 2016. Afterwards, the seasonal variations of the global distribution of RREs were studied. The global distribution of pseudo satellite measurements for a 16-day orbit repeat cycle showed relatively uniform distribution over the land of the northern hemisphere. The results demonstrated that 61.24% of the global RREs were smaller than 0.25%, or about 1 ppm, while 2.76% of the results were larger than 0.75%. The statistics reveal the future performance of the spaceborne IPDA lidar.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Dody Hidayat

Kebakaran dapat terjadi dimana saja salah satunya dapat terjadi di alat transportasi air yakni kapal. Kebakaran selalu menyebabkan hal-hal yang tidak diinginkan baik kerugian material maupun ancaman keselamatan jiwa manusia. Seiring dari kejadian tersebut musibah kecelakaan kapal yang disebabkan oleh bahaya kebakaran sangatlah mungkin terjadi. Salah satu yang dapat mencegah kejadian kebakaran pada kapal haruslah dapat mendeteksi dini kebakaran tersebut. Untuk mendeteksi dini terjadinya kebakaran dikapal maka dirancanglah sebuah alat proteksi kebakaran otomatisberbasis adruino. Dimana Arduino merupakan board yang memiliki sebuah mikrokontroller sebagai  otak kendali sistem. Sistem otomatisasi atau controller tidak akan terlepas dengan apa yang disebut  dengan ‘sensor’. Sensor adalah sebuah alat untuk mendeteksi atau mengukut sesuatu yang digunakan untuk mengubah variasi mekanis, magnetis, panas, sinar dan kimia menjadi tegangan dan arus listrik. sistem yang dirancang ini dilengkapi dengan beberapa sensor diantaranya adalah sensor apiUV-Tron R2868, sensor asap MQ-2 dan kemudian sensor suhuDS18B20. Mikrokontroller sebagai pengendali akan merespon input yang berupa sensor tersebut ketika data yang dibaca oleh sensor mendeteksikebakaran diantaranya mendeteksi adanya asap, kemudian api dan suhu. Sebagai output dari sistem berupa racun api (fire extinguisher)dimana kandungan yang ada pada racun api tersebut berupa Dry Chemical Powder dan Carbon Dioxide (CO2) yang fungsinya digunakan untuk memadamkan api serta dilengkapi buzzer sebagai alarm peringatan jika terjadi kebakaran. 


2012 ◽  
Author(s):  
William R. Howard ◽  
Brian Wong ◽  
Michelle Okolica ◽  
Kimberly S. Bynum ◽  
R. A. James

Sign in / Sign up

Export Citation Format

Share Document