scholarly journals Public Sentiment Analysis of Online Transportation in Indonesia through Social Media Using Google Machine Learning

Author(s):  
Desak Ayu Savita ◽  
I Ketut Gede Darma Putra ◽  
Ni Kadek Dwi Rusjayanthi

Public opinion is important to agencies or parties in particular fields, as it may indicate a tendency of public's view towards something (such as an object or process). One of them is in the transportation sector. Transportation has become a necessity for the community, many things more effective and efficient online, so that online transportation becomes important for society. The proliferation of online transportation, caused citizens to express opinions through social media. It is important to know the level of service of online transportation considering the large number of users, so that it can be used as a basis for improvement. One of the methods public opinion in social media is by sentiment analysis. The study used the help of Google Machine Learning for the sentiment analysis process that can produce 82,6% of accuracy number, 82,2% of precision, 83,3% of recall with the most sentiment result indicate to public opinion falls into the negative sentiment category for Gojek companies in media social of Twitter.

2020 ◽  
Vol 8 (5) ◽  
pp. 4219-4224

Social media emerged as one of the key components to reach disaster affected people, as they supplement planning and operational coordination. Sentiment analysis was expended to identify, extract or characterize subjective information, such as opinions, expressed in a tweet. The sentiment expressed is analyzed and is classified as positive or negative sentiment, which is not versatile enough to capture the exact sentiment conveyed by the user. Opinion mining is a machine learning process used to extract information conveyed by the user in the form of text. In this paper, the lexical analysis to sentiment analysis of twitter data is employed. Conventionally, the sentiment is conveyed using the polarity of the data but in this paper, sentiment intensity is employed to convey the sentiments. Performing sentiment analysis on tweets gives us the sentiment intensity conveyed by the user, which in turn is used to calculate the severity of the disaster event specified by the user. Further, it is also used to classify the tweets based on their severity. This paper proposes a methodology to extract relevant sentiment information from Location Based Social Network (LBSN) and suggests a unique scale to classify this information to help disaster management authority.


Author(s):  
Tanzilal Mustaqim

Religion and politics are two things that are closely related to each other and cannot be separated. Various public responses expressed by various public media such as print media and social media that can be classified as positive, neutral and negative, one of which is using Twitter. Twitter is a microblogging social media that contains many writings with many types from various types of users including posts that contain opinions about religion and politics. This research conducted an analysis process in the form of extraction of hidden insight data, visual analysis and sentiment analysis of public opinion related to religion and politics. The analysis was conducted on 5433 datasets written on Twitter on November 12, 2019. The analysis process began with data pre-processing, data clustering and sentiment analysis. Pre-processing data generates clean data from characters and non-essential data for use in the process of data clustering and sentiment analysis. Data clustering produces extraction of hidden insight data using k-means clustering. Sentiment data analysis uses vader sentiment polarity detection to determine dataset sentiments. The results of tests carried out using jupyter notebook show insight data hidden in the form of 50 unique words that are divided into 5 clusters of 10 words each then the sentiment analysis process is carried out in each cluster. Another result is visual analysis in the form of word cloud and hashtag clustering which shows the dominant words of each piece of data according to sentiment and word count. Also pointed out words that have a frequency of dominant emergence accompanied by word sentiments. The process of analyzing public opinion datasets related to religion and politics using k-means clustering and vader polarity detection sentiments can be done well.


2017 ◽  
Vol 34 (6) ◽  
pp. 480-488 ◽  
Author(s):  
Chedia Dhaoui ◽  
Cynthia M. Webster ◽  
Lay Peng Tan

Purpose With the soaring volumes of brand-related social media conversations, digital marketers have extensive opportunities to track and analyse consumers’ feelings and opinions about brands, products or services embedded within consumer-generated content (CGC). These “Big Data” opportunities render manual approaches to sentiment analysis impractical and raise the need to develop automated tools to analyse consumer sentiment expressed in text format. This paper aims to evaluate and compare the performance of two prominent approaches to automated sentiment analysis applied to CGC on social media and explores the benefits of combining them. Design/methodology/approach A sample of 850 consumer comments from 83 Facebook brand pages are used to test and compare lexicon-based and machine learning approaches to sentiment analysis, as well as their combination, using the LIWC2015 lexicon and RTextTools machine learning package. Findings Results show the two approaches are similar in accuracy, both achieving higher accuracy when classifying positive sentiment than negative sentiment. However, they differ substantially in their classification ensembles. The combined approach demonstrates significantly improved performance in classifying positive sentiment. Research limitations/implications Further research is required to improve the accuracy of negative sentiment classification. The combined approach needs to be applied to other kinds of CGCs on social media such as tweets. Practical implications The findings inform decision-making around which sentiment analysis approaches (or a combination thereof) is best to analyse CGC on social media. Originality/value This study combines two sentiment analysis approaches and demonstrates significantly improved performance.


Author(s):  
Farrikh Alzami ◽  
Erika Devi Udayanti ◽  
Dwi Puji Prabowo ◽  
Rama Aria Megantara

Sentiment analysis in terms of polarity classification is very important in everyday life, with the existence of polarity, many people can find out whether the respected document has positive or negative sentiment so that it can help in choosing and making decisions. Sentiment analysis usually done manually. Therefore, an automatic sentiment analysis classification process is needed. However, it is rare to find studies that discuss extraction features and which learning models are suitable for unstructured sentiment analysis types with the Amazon food review case. This research explores some extraction features such as Word Bags, TF-IDF, Word2Vector, as well as a combination of TF-IDF and Word2Vector with several machine learning models such as Random Forest, SVM, KNN and Naïve Bayes to find out a combination of feature extraction and learning models that can help add variety to the analysis of polarity sentiments. By assisting with document preparation such as html tags and punctuation and special characters, using snowball stemming, TF-IDF results obtained with SVM are suitable for obtaining a polarity classification in unstructured sentiment analysis for the case of Amazon food review with a performance result of 87,3 percent.


2021 ◽  
pp. 1-13
Author(s):  
C S Pavan Kumar ◽  
L D Dhinesh Babu

Sentiment analysis is widely used to retrieve the hidden sentiments in medical discussions over Online Social Networking platforms such as Twitter, Facebook, Instagram. People often tend to convey their feelings concerning their medical problems over social media platforms. Practitioners and health care workers have started to observe these discussions to assess the impact of health-related issues among the people. This helps in providing better care to improve the quality of life. Dementia is a serious disease in western countries like the United States of America and the United Kingdom, and the respective governments are providing facilities to the affected people. There is much chatter over social media platforms concerning the patients’ care, healthy measures to be followed to avoid disease, check early indications. These chatters have to be carefully monitored to help the officials take necessary precautions for the betterment of the affected. A novel Feature engineering architecture that involves feature-split for sentiment analysis of medical chatter over online social networks with the pipeline is proposed that can be used on any Machine Learning model. The proposed model used the fuzzy membership function in refining the outputs. The machine learning model has obtained sentiment score is subjected to fuzzification and defuzzification by using the trapezoid membership function and center of sums method, respectively. Three datasets are considered for comparison of the proposed and the regular model. The proposed approach delivered better results than the normal approach and is proved to be an effective approach for sentiment analysis of medical discussions over online social networks.


2020 ◽  
Vol 1 (2) ◽  
pp. 61-66
Author(s):  
Febri Astiko ◽  
Achmad Khodar

This study aims to design a machine learning model of sentiment analysis on Indosat Ooredoo service reviews on social media twitter using the Naive Bayes algorithm as a classifier of positive and negative labels. This sentiment analysis uses machine learning to get patterns an model that can be used again to predict new data.


2020 ◽  
Vol 9 (2) ◽  
pp. 161
Author(s):  
Komang Dhiyo Yonatha Wijaya ◽  
Anak Agung Istri Ngurah Eka Karyawati

During this pandemic, social media has become a major need as a means of communication. One of the social medias used is Twitter by using messages referred to as tweets. Indonesia currently undergoing mass social distancing. During this time most people use social media in order to spend their idle time However, sometimes, this result in negative sentiment that used to insult and aimed at an individual or group. To filter that kind of tweets, a sentiment analysis was performed with SVM and 3 different kernel method. Tweets are labelled into 3 classes of positive, neutral, and negative. The experiments are conducted to determine which kernel is better. From the sentiment analysis that has been performed, SVM linear kernel yield the best score Some experiments show that the precision of linear kernel is 57%, recall is 50%, and f-measure is 44%


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2020 ◽  
pp. 193-201 ◽  
Author(s):  
Hayder A. Alatabi ◽  
Ayad R. Abbas

Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show the success of this system where the accuracy of the system is more than 95% on social media data.


Sign in / Sign up

Export Citation Format

Share Document