How gauge length and loading rate influence the root tensile strength of Betula platyphylla

2016 ◽  
Vol 71 (6) ◽  
pp. 460-466 ◽  
Author(s):  
Y. Yang ◽  
L. Chen ◽  
N. Li
2020 ◽  
Vol 35 (1) ◽  
pp. 61-70
Author(s):  
Na Young Park ◽  
Young Chan Ko ◽  
Lili Melani ◽  
Hyoung Jin Kim

AbstractFor the mechanical properties of paper, tensile testing has been widely used. Among the tensile properties, the tensile stiffness has been used to determine the softness of low-density paper. The lower tensile stiffness, the greater softness of paper. Because the elastic region may not be clearly defined in a load-elongation curve, it is suggested to use the tensile modulus which is defined as the slope between the two points in the curve. The two points which provide the best correlation with subjective softness evaluation should be selected. Low-density paper has a much lower tensile strength, but much larger elongation at the break. It undergoes a continuous structural change during mechanical testing. The degree of the structural change should depend on tensile conditions such as the sample size, the gauge length, and the rate of elongation. For low-density paper, the tensile modulus and the tensile strength should be independent of each other. The structure efficiency factor (SEF) is defined as a ratio of the tensile strength to the tensile modulus and it may be used a guideline in developing superior low-density paper products.


2014 ◽  
Vol 1611 ◽  
pp. 95-104 ◽  
Author(s):  
Nadira Mathura ◽  
Duncan Cree ◽  
Ryan P. Mulligan

ABSTRACTIn many tropical countries coconut (coir) fiber production is a major source of income for rural communities. The Caribbean has an abundance of coconuts but research into utilizing its by-products is limited. Environmentally friendly coir fibers are natural polymers generally discarded as waste material in this region. Research has shown that coir fiber from other parts of the world has successfully been recycled. This paper therefore investigates the mechanical properties of Caribbean coir fiber for potential applications in civil engineering.Approximately four hundred fibers were randomly taken from a coir fiber stack and subjected to retting in both distilled and saline water media. The mechanical properties of both the retted and unretted coir fibers were evaluated at weekly increments for a period of 3 months. Tensile strength test, x-ray diffraction analysis and scanning electron micrographs were used to assess trends and relationships between fiber gauge lengths, diameter, tensile strength and Young’s modulus. Diameters ranged between 0.11 mm-0.46 mm, while fiber samples were no longer than 250 mm in length. The tensile strength and strain at break decreased as the gauge length increased for both unretted and retted fibers. The opposite occurred for the relationship between the gauge length and Young’s modulus. Additionally, the tensile strength and modulus decreased as the fiber diameter increased. Neither distilled nor saline water improved the coir fiber’s crystalline index. Scanning electron micrographs qualitatively assessed fiber surfaces and captured necking and microfibril degradation at the fractured ends.The analysis revealed that the tensile strength, modulus, strain at break and crystallinity properties of the Caribbean coir fibers were comparable to commercially available coir fiber which are currently being used in many building applications.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 179 ◽  
Author(s):  
Lee ◽  
Chu ◽  
Lin ◽  
Kung ◽  
Lin ◽  
...  

Frequent earthquakes, monsoon torrential rains and typhoons cause severe landslides and soil erosion in Taiwan. Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus are major pioneer tree species appearing on landslide-scarred areas. Thus, these species can be used to restore the self-sustaining native vegetation on forest landslides, to control erosion, and to stabilize slope. However, their growth performance, root traits and biomechanical properties have not been well characterized. In this study, root system and root traits were investigated using the excavation method, and biomechanical tests were performed to determine the uprooting resistance, root tensile strength and Young’s modulus of 1-year-old Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus seedlings. The results reveal that relative to H. taiwanensis, M. tanarius and M. paniculatus seedlings had significantly larger root collar diameter, longer taproot length, higher root biomass, higher root density, higher root length density, heavier root mass, larger external root surface area, higher root tissue density, larger root volume, longer total root length, and a higher root tip number. Additionally, the height of M. paniculatus seedlings was significantly higher than those of H. taiwanensis and M. tanarius. Furthermore, the uprooting resistance and root tensile strength of M. paniculatus seedlings was significantly higher than those of H. taiwanensis and M. tanarius. Young’s modulus of M. paniculatus and M. tanarius seedlings was also significantly higher than that of H. taiwanensis. These growth characteristics and biomechanical properties demonstrate M. paniculatus and M. tanarius are superior than H. taiwanensis, considering growth performance, root anchorage capability, tensile strength and Young’s modulus. Taken as a whole, the rank order for species selection of these pioneer species for reforestation comes as: M. paniculatus M. tanarius H. taiwanensis. These results, along with knowledge on vegetation dynamics following landslides, allow us to better evaluate the effect of selective removal management of pioneer species on the resilience and sustainability of landslides.


2003 ◽  
Vol 38 (3) ◽  
pp. 233-245 ◽  
Author(s):  
T Yokoyama

The tensile strength and energy absorption of adhesive butt joints at high rates of loading are determined with a tensile split Hopkinson bar using a cylindrical specimen. A commercially available single-component cyanoacrylate adhesive (instantaneous adhesive) and two different adherend materials are used in the adhesion tests. The impact tensile strength of the cyanoacrylate adhesive butt joints is determined from the applied tensile stress history at failure initiation. The impact absorbed energy is obtained by numerical integration of dynamic tensile load-adhesive deformation data. Comparative tension tests at low and intermediate rates of loading are performed on an Instron testing machine. An axisymmetric finite element analysis is carried out to investigate the stress distributions in the adhesive layer of the cyanoacrylate adhesive butt joints. The effects of loading rate, adherend material and adhesive layer thickness on the tensile strength and energy absorption of the cyanoacrylate adhesive butt joints are examined in detail. It is shown that the joint tensile strength increases significantly with increasing loading rate and is greatly affected by both the adhesive layer thickness and the adherend materials. The limitations of the technique are discussed.


2016 ◽  
Vol 47 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Č. Mizera ◽  
D. Herák ◽  
P. Hrabě ◽  
M. Müller ◽  
A. Kabutey

Abstract The effect of gauge length of false banana fibre (Ensete ventricosum) on the tensile strength, volume energy, and modulus of elasticity under tensile loading was examined. Fibres of gauge length L0 (mm) 10, 20, 40, 80, 160, and 320 mm were prepared and tested until rupture point at strain rate of 0.05 min−1. Mathematical models describing the mechanical behaviour of the varying gauge lengths were presented. With the increasing gauge length of fibre, the tensile strength and volume energy decreased while the values of modulus of elasticity increased. The theoretical model describing the mechanical behaviour of Ensete fibre under tensile loading presented herein provides useful information for the fibres application in industry. The determined models could be used as a background for further research focused on Ensete fibre application.


1979 ◽  
Vol 22 (87) ◽  
pp. 321-329 ◽  
Author(s):  
David M. McClung

AbstractExperimental procedure and measured estimates of the tensile strength of snow are given by a new method utilizing large sample sizes of naturally deposited snow. Data are presented as a function of average sample density, temperature, loading rate, and snow type. The results show less scatter in the data than previous in-situ estimates and lower mean strength values as a function of density. The relevance of the data to tensile fracture as observed in slab avalanche release is discussed.


Sign in / Sign up

Export Citation Format

Share Document