scholarly journals Organic Geochemistry and Thermal Maturity Assessment of Cretaceous Balambo Formation from Selected Sites, Kurdistan, NE Iraq

2021 ◽  
pp. 532-554
Author(s):  
Razawa Hamarashid A. Sarraj ◽  
Ibrahim Mohammed J. Mohialdeen

The Cretaceous Balambo Formation from three sections in Kurdistan Region of Northern Iraq was studied. The selected sections are located in the Zagros Fold -Thrust Belt. Eleven rock samples were analyzed by means of the organic geochemical method, Bitumen extraction method, and gas chromatography/mass spectrometry to determine the bitumen and hydrocarbon content, kerogen types, origin of organic matter, thermal maturity level, and depositional environment. The analyzed samples are considered to have an excellent potential in Baranan-1.G1 and Sazan sections, with poor to fair potential in Baraw section. The Baranan-1.G1 source rocks are of type II kerogen (oil prone), whereas Sazan and Baraw samples are of type II/III (oil/ gas prone). Detailed distribution analysis of biomarkers such as normal alkane, isoprenoids, sterane and terpane was performed on saturated hydrocarbons. The mode of n-alkanes and isoprenoids distribution in all analyzed samples is similar, with a unimodal distribution that indicates non-biodegraded hydrocarbons, with the same range of alkane compounds between C13-C34 alkanes. The results of n-C17, pristane, n-C18 and phytane, and regular steranes show that the source rocks of Balambo Formation in Baranan-1.G1 are mainly rich with algal marine organic matter deposited under a reducing environment, while Baraw and Sazan sections are composed of mixed marine organic matter that refers to terrestrial land plants input deposited under reducing anoxic/dysoxic environments. Thermal maturation appraisal is deduced from Pristane/n-C17 versus Phytane/n-C18 diagram, Carbon Preference Index (CPI), C29 ββ/ (ββ+αα), C29 20S/ (20S +20R), C32 22S/ (22S+22R), and Ts/ (Ts+Tm). All these parameters indicate that the analyzed samples are mature and have entered the oil window (early to peak oil window). Biomarker ratios of C22/C21, C24/C23 and C26/C25, C31R/C30H show that the Balambo Formation is composed mostly of carbonates with less shale beds.

Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 439 ◽  
Author(s):  
Delu Li ◽  
Rongxi Li ◽  
Di Zhao ◽  
Feng Xu

Measurements of total organic carbon, Rock-Eval pyrolysis, X-ray diffraction, scanning electron microscope, maceral examination, gas chromatography, and gas chromatography-mass spectrometry were conducted on the organic-rich shale of Lower Paleozoic Niutitang Formation and Longmaxi Formation in Dabashan foreland belt to discuss the organic matter characteristic, organic matter origin, redox condition, and salinity. The results indicate that the Niutiang Formation and Longmaxi Formation organic-rich shale are good and very good source rocks with Type I kerogen. Both of the shales have reached mature stage for generating gas. Biomarker analyses indicate that the organic matter origin of Niutitang Formation and Longmaxi Formation organic-rich shale are all derived from the lower bacteria and algae, and the organic matter are all suffered different biodegradation degrees. During Niutitang Formation and Longmaxi Formation period, the redox conditions are both anoxic with no stratification and the sedimentary water is normal marine water.


2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Xiong Cheng ◽  
Dujie Hou ◽  
Xinhuai Zhou ◽  
Jinshui Liu ◽  
Hui Diao ◽  
...  

Eocene coal-bearing source rocks of the Pinghu Formation from the W-3 well in the western margin of the Xihu Sag, East China Sea Shelf Basin were analyzed using Rock-Eval pyrolysis and gas chromatography–mass spectrometry to investigate the samples’ source of organic matter, depositional environment, thermal maturity, and hydrocarbon generative potential. The distribution patterns of n-alkanes, isoprenoids and steranes, high Pr/Ph ratios, abundant diterpanes, and the presence of non-hopanoid triterpanes indicate predominant source input from higher land plants. The contribution of aquatic organic matter was occasionally slightly elevated probably due to a raised water table. High hopane/sterane ratios and the occurrence of bicyclic sesquiterpanes and A-ring degraded triterpanes suggest microbial activity and the input of microbial organisms. Overwhelming predominance of gymnosperm-derived diterpanes over angiosperm-derived triterpanes suggest a domination of gymnosperms over angiosperms in local palaeovegetation during the period of deposition. The high Pr/Ph ratios, the plot of Pr/n-C17 versus Ph/n-C18, the almost complete absence of gammacerane, and the distribution pattern of hopanes suggest that the samples were deposited in a relatively oxic environment. Generally, fluctuation of redox potential is coupled with source input, i.e., less oxic conditions were associated with more aquatic organic matter, suggesting an occasionally raised water table. Comprehensive maturity evaluation based on Ro, Tmax, and biomarker parameters shows that the samples constitute a natural maturation profile ranging from marginally mature to a near peak oil window. Hydrogen index and atomic H/C and O/C ratios of kerogens suggest that the samples mainly contain type II/III organic matter and could generate mixed oil and gas.


2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Damien Do Couto ◽  
Sylvain Garel ◽  
Andrea Moscariello ◽  
Samer Bou Daher ◽  
Ralf Littke ◽  
...  

AbstractAn extensive subsurface investigation evaluating the geothermal energy resources and underground thermal energy storage potential is being carried out in the southwestern part of the Swiss Molasse Basin around the Geneva Canton. Among this process, the evaluation of the petroleum source-rock type and potential is an important step to understand the petroleum system responsible of some oil and gas shows at surface and subsurface. This study provides a first appraisal of the risk to encounter possible undesired occurrence of hydrocarbons in the subsurface of the Geneva Basin. Upon the numerous source-rocks mentioned in the petroleum systems of the North Alpine Foreland Basin, the marine Type II Toarcian shales (Lias) and the terrigenous Type III Carboniferous coals and shales have been sampled from wells and characterized with Rock–Eval pyrolysis and GC–MS analysis. The Toarcian shales (known as the Posidonia shales) are showing a dominant Type II organic matter composition with a Type III component in the Jura region and the south of the basin. Its thermal maturity (~ 0.7 VRr%) shows that this source-rock currently generates hydrocarbons at depth. The Carboniferous coals and shales show a dominant Type III organic matter with slight marine to lacustrine component, in the wet gas window below the Geneva Basin. Two bitumen samples retrieved at surface (Roulave stream) and in a shallow borehole (Satigny) are heavily biodegraded. Relative abundance of regular steranes of the Roulave bitumen indicates an origin from a marine Type II organic matter. The source of the Satigny bitumen is supposedly the same even though a deeper source-rock, such as the lacustrine Permian shales expelling oil in the Jura region, can’t be discarded. The oil-prone Toarcian shales in the oil window are the most likely source of this bitumen. A gas pocket encountered in the shallow well of Satigny (Geneva Canton), was investigated for molecular and stable isotopic gas composition. The analyses indicated that the gas is made of a mixture of microbial (very low δ13C1) and thermogenic gas. The isotopic composition of ethane and propane suggests a thermogenic origin from an overmature Type II source-rock (> 1.6 VRr%) or from a terrigenous Type III source at a maturity of ~ 1.2 VRr%. The Carboniferous seems to be the only source-rock satisfying these constraints at depth. The petroleum potential of the marine Toarcian shales below the Geneva Basin remains nevertheless limited given the limited thickness of the source-rock across the area and does not pose a high risk for geothermal exploration. A higher risk is assigned to Permian and Carboniferous source-rocks at depth where they reached gas window maturity and generated large amount of gas below sealing Triassic evaporites. The large amount of faults and fractures cross-cutting the entire stratigraphic succession in the basin certainly serve as preferential migration pathways for gas, explaining its presence in shallow stratigraphic levels such as at Satigny.


2018 ◽  
Vol 2 (1) ◽  
pp. 7-17
Author(s):  
Ayad Faqi ◽  
Ali Ali ◽  
Bahjat Abdullah ◽  
Stephen Bowden

In this study, source rock characteristics and lateral changes in thermal maturity of the Sargelu Formation (Middle Jurassic) in three outcrops were studied. The formation’s outcrops can be found in the High Folded, and Imbricated Zones of Iraqi Tectonic Division. In order to achieve the main goals of this study, the Gas chromatography mass spectrometry (GC-MS) and Rock-Eval pyrolysis were performed on the organic matter (OM) of the Sargelu sediments. Pristane/Phytane ratios for analyzed samples indicate reducing conditions (anoxic) during sedimentation. Moreover, based on  C29/C30 hopanes ratios the sediments of the Sargelu Formation associated with clay- rich source rock. Biomarker thermal maturity parameters display that all samples are thermally in Oil Window at least. The biomarker findings reveal that the samples of Walasimt and Barsarin are seem more mature than Banik section. The values for TOC% of the Sargelu Formation may show Excellent, Very Good, and Poor quality source rock. The Pyrolysis executed for studied samples revealed the kerogen in Banik section belongs to Types II and III (Probably Oil/Gas- prone), while Barsarin and Walasimt sections obtained Types III-IV Kerogen (Gas- prone). Pyrolysis parameters suggested Early Mature Stage in Banik, While Overmature in Barsarin and Walasimt. The data also shows that organic matter of the Sargelu Formation in Banik section is in Oil Widow, while in Barsarin and Walasimt is in Gas Window.


2014 ◽  
Vol 18 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Jude E. Ogala ◽  
Mike I. Akaegbobi

<p>The concentration and distribution of aromatic biomarkers in coals and shales from five boreholes penetrating the Maastrichtian Mamu Formation of the Anambra Basin, southeastern Nigeria, were investigated by gas chromatography-mass spectrometryto assess the thermal maturity and organic matter input. The study focused on the variations of the relative abundances of naphthalenes, phenanthrenes, and monaromatic and triaromatic steroids identified on the mass fragmentograms. Trimethylnaphthalene(TMN) is the most abundant member of the naphthalene family while methylphenanthrene (MP) is the most abundant phenanthrene family member. The total of phenanthrenes and their isomers was greater than that of naphthalenes. The distribution of these aromatic hydrocarbons and their akyl derivatives was strongly controlled by a selective expulsion mechanism and thermal maturation of organic matter. The low dibenzothiophene/phenanthrene (DBT/PHEN) ratios (0.01-0.06), as well as the enhanced concentrations of 1,2,5-TMN relative to 1,2,7- TMN,indicates organic matter derived mainly from higher plants,and the extract ternary plot of C<sub>27</sub>, C<sub>28</sub> and C<sub>29</sub> monoaromatic steroids suggests a Type III and mixed Type II/III kerogen. The calculated mean vitrinite reflectance (%R<sub>m</sub>), determined from the distributions of the isomers of methyldibenzothiophene ratio (MDR) in the rock extracts, ranged from 0.51 to 1.43. These maturity values indicate that the coal and shale extracts are marginally mature for hydrocarbon generation.</p><p> </p><p><strong>Resumen</strong></p><p>La concentración y distribución de biomarcadores aromáticos en carbones y esquistos de cinco perforaciones en la formación Maastrichtian Mamu de la cuenca de Anambra, en el sureste de Nigeria, fueron analizados a través de un estudio de espectometría cromatográfico y de masa del gas para medir la madurez termal y la entrada de material orgánico. El estudio está enfocado en las variaciones de la abundancia relativa de naftalinas y fenantrenos, y en los esteroides monoaromáticos y triaromáticos identificados en los fragmentogramas de masas. La trimetinaftalina (TMN) es la más abundante de la familia de las naftalinas mientras el metilfenantreno (MP) es el más abundante de los fenantrenos. El tota de los fenantrenos y sus isómeros fue mayor que el de las naftalinas. La distribución de estos hidrocarbones aromáticos y sus alquilos derivados fue controlada ampliamente por un mecanismo de expulsión selectiva y de la maduración térmica de material orgánico. La baja proporción dibenziotofeno/fenantreno (DBT/ PHEN) (0.01-0.06), al igual que las concentraciones mejoradas de 1,2,5-TMN relativas de 1,2,7-TMN indican que la materia orgánica se deriva principalmente de plantas mayores, y del diagrama terniario de los esteroides monoaromáticos C<sub>27</sub>, C<sub>28</sub> y C<sub>29</sub> sugiere un tipo III mezclado con tipos II/III de querógenos. El valor calculado de la reflectancia de vitrinita (%Rm) determinado de la proporción de isómeros de metildibenziotofeno (MDR) en los extractos rocosos oscila de 0.51 a 1.43. Estos valores de madurez indican que los extractos de carbones y esquistos son marginalmente maduros para la generación de hidrocarbono.</p><p> </p>


2005 ◽  
Vol 45 (1) ◽  
pp. 253
Author(s):  
D. Dawson ◽  
K. Grice ◽  
R. Alexander

A relationship has been identified between the maturity level of source rocks and the stable hydrogen isotopic compositions (δD) of extracted saturated hydrocarbons, based on the analysis of nine sediments and five crude oils from the Perth Basin (WA). The sediments cover the immature to late mature range. Distinct δD signatures are observed for the immature sediments where pristane and phytane are significantly depleted in deuterium (D) relative to the n-alkanes. With increasing maturity the difference between the δD values of n-alkanes and isoprenoids reduces as pristane and phytane become progressively enriched in D. The n-alkane–isoprenoid δD signature of the crude oils, including one from a different source facies, is similar to mature–late mature sediments representative of the peak oil–generative window. Enrichment of D in isoprenoids is attributed to isotopic exchange associated with thermal maturation. Average δD values of pristane and phytane correlate well with vitrinite reflectance, as does the biomarker maturity parameter Ts/Tm. The limited data set suggests that δD values of aliphatic hydrocarbons may be useful for establishing thermal maturity, particularly when other maturity parameters are not appropriate. Furthermore, we suggest δD values may be useful over a wider maturity range than traditional parameters, particularly at very high maturity where biomarker parameters are no longer effective.


2020 ◽  
Vol 21 (1) ◽  
pp. geochem2019-060
Author(s):  
Yu Guo ◽  
Wenzhe Gang ◽  
Gang Gao ◽  
Shangru Yang ◽  
Chong Jiang ◽  
...  

Paleogene sediments, especially the third member of the Dongying Formation (Ed3) and the first and third members of the Shahejie Formation (Es1 and Es3), have been regarded as the most important source rocks in the Nanpu Sag. Organic and inorganic analyses, including Rock-Eval pyrolysis, gas chromatography-mass spectrometry, and element geochemistry, in 91 mudstone samples, were used to reconstruct the palaeoenvironmental conditions, such as palaeoclimate, palaeo-salinity and palaeo-redox conditions, and to recognize the origin of organic matter. The results show that Es3 has a higher TOC content than Es1 and Ed3. Hydrocarbon genetic potential (S1 + S2) of the samples indicate fair to good hydrocarbon potential. The kerogen type of Ed3 and Es1 source rocks are Type II1–II2, while Es3 source rocks are dominated by Type II2–III kerogens. Biomarkers and inorganic geochemical indicatives of source rocks, such as Pr/Ph, V/(V + Ni) and Cu/Zn, indicate a lacustrine environment with fresh to brackish water under suboxic to anoxic conditions during deposition. Ed3 source rocks are characterized by low G/C30H (gamacerane/C30hopane) (<0.1), TT/C30H (tricyclic terpane/C30hopane) and S/H (serane/hopane), high Pr/Ph (pristane/phytane) and C24TeT/C23TT (C24tetracyclic terpane/C23tricyclic terpane), indicating mixed input of both algae and terrestrial higher plants, dominated by terrestrial higher plants. Es1 source rocks display medium G/C30H, TT/C30H, S/H, Pr/Ph and C24TeT/C23TT, indicative of a mixed input of both algae and terrestrial higher plants. Es3 source rocks are characterized by high G/C30H (>0.1), TT/C30H and S/H, low Pr/Ph and C24TeT/C23TT, typical of a mixed input of algae and terrestrial higher plants, with algal dominance. Ed3, Es1 and Es3 source rocks were mostly deposited in semi-arid to humid-warm climate conditions, with an average temperature higher than 15°C. This study suggests that suitable temperatures, a fresh to brackish lacustrine environment and suboxic to anoxic conditions could result in a high organic matter concentration and preservation, thus providing prerequisites for the formation of high-quality source rocks.Supplementary material: Tables S1–S3 are available at https://doi.org/10.6084/m9.figshare.c.5227684


2020 ◽  
Vol 10 (8) ◽  
pp. 3191-3206
Author(s):  
Olusola J. Ojo ◽  
Ayoola Y. Jimoh ◽  
Juliet C. Umelo ◽  
Samuel O. Akande

Abstract The Patti Formation which consists of sandstone and shale offers the best potential source beds in the Bida Basin. This inland basin is one of the basins currently being tested for hydrocarbon prospectivity in Nigeria. Fresh samples of shale from Agbaja borehole, Ahoko quarry and Geheku road cut were analysed using organic geochemical and palynological techniques to unravel their age, paleoecology, palynofacies and source bed hydrocarbon potential. Palynological data suggest Maastrichtian age for the sediments based on the abundance of microfloral assemblage; Retidiporites magdalenensis, Echitriporites trianguliformis and Buttinia andreevi. Dinocysts belonging to the Spiniferites, Deflandrea and Dinogymnium genera from some of the analysed intervals are indicative of freshwater swamp and normal sea conditions. Palynological evidence further suggests mangrove paleovegetation and humid climate. Relatively high total organic carbon TOC (0.77–8.95 wt%) was obtained for the shales which implies substantial concentration of organic matter in the source beds. Hydrocarbon source rock potential ranges from 0.19 to 0.70 mgHC/g.rock except for a certain source rock interval in the Agbaja borehole with high yield of 25.18 mgHC/g.rock. This interval also presents exceptionally high HI of 274 mgHC/g.TOC and moderate amount of amorphous organic matter. The data suggests that in spite of the favourable organic matter quantity, the thermal maturity is low as indicated by vitrinite reflectance and Tmax (0.46 to 0.48 Ro% and 413 to 475 °C, respectively). The hydrocarbon extracts show abundance of odd number alkanes C27–C33, low sterane/hopane ratio and Pr/Ph > 2. We conclude that the source rocks were terrestrially derived under oxic condition and dominated by type III kerogen. Type II organic matter with oil and gas potential is a possibility in Agbaja area of Bida Basin. Thermal maturity is low and little, or no hydrocarbon has been generated from the source rocks.


Sign in / Sign up

Export Citation Format

Share Document