Ecological Distribution, Agricultural Trade Liberalization, and IN SITU Genetic Diversity

Author(s):  
J. Boyce

Genetic diversity in crop plants is crucial for long-term world food security. This diversity is sustained in the field primarily by poor farmers in developing countries, who receive no compensation for providing this external benefit to humankind. When agricultural imports displace local production in centers of genetic diversity, this threatens both rural livelihoods and the continued provision of this external benefit. The North American Free Trade Agreement’s impact on Mexican maize farming illustrates the problem. The prospects for remedial policies are shaped by the distribution of the costs and benefits of action of inaction.

Author(s):  
Xiaomin Gu ◽  
Yong Xiao ◽  
Shiyang Yin ◽  
Honglu Liu ◽  
Baohui Men ◽  
...  

The widespread use of reclaimed water has alleviated the water resource crisis worldwide, but long-term use of reclaimed water for irrigation, especially in agricultural countries, might threaten the soil environment and further affect groundwater quality. An in-situ experiment had been carried out in the North China Plain, which aimed to reveal the impact of long-term reclaimed water irrigation on soil properties and distribution of potentially toxic elements (As, Cd, Cr, Hg, Zn and Pb) in the soil profile as well as shallow groundwater. Four land plots were irrigated with different quantity of reclaimed water to represent 0, 13, 22 and 35 years’ irrigation duration. Pollution Load Index (PLI) values of each soil layer were calculated to further assess the pollution status of irrigated soils by potentially toxic elements (PTEs). Results showed that long-term reclaimed water irrigation caused appreciable increase of organic matter content, and might improve the soil quality. High soil organic matter concentrations conduced to high adsorption and retention capacity of the soils toward PTEs, which could reduce the risk of PTEs leaching into deep layers or shallow groundwater. Highest levels of Cr, Pb and Zn were observed at 200–240 cm and 460–500 cm horizons in plots. Longer irrigation time (35 years and 22 years) resulted in a decreasing trend of As, Cd, Hg, Pb and Zn in lower part of soil profiles (>540 cm) compared with that with 13-years’ irrigation years. Long-term reclaimed water irrigation still brought about increases in concentrations of some elements in deep soil layer although their content in soils and shallow groundwater was below the national standard. Totally speaking, proper management for reclaimed water irrigation, such as reduction of irrigation volume and rate of reclaimed water, was still needed when a very long irrigation period was performed.


2009 ◽  
Vol 66 (7) ◽  
pp. 1467-1479 ◽  
Author(s):  
Sarah L. Hughes ◽  
N. Penny Holliday ◽  
Eugene Colbourne ◽  
Vladimir Ozhigin ◽  
Hedinn Valdimarsson ◽  
...  

Abstract Hughes, S. L., Holliday, N. P., Colbourne, E., Ozhigin, V., Valdimarsson, H., Østerhus, S., and Wiltshire, K. 2009. Comparison of in situ time-series of temperature with gridded sea surface temperature datasets in the North Atlantic. – ICES Journal of Marine Science, 66: 1467–1479. Analysis of the effects of climate variability and climate change on the marine ecosystem is difficult in regions where long-term observations of ocean temperature are sparse or unavailable. Gridded sea surface temperature (SST) products, based on a combination of satellite and in situ observations, can be used to examine variability and long-term trends because they provide better spatial coverage than the limited sets of long in situ time-series. SST data from three gridded products (Reynolds/NCEP OISST.v2., Reynolds ERSST.v3, and the Hadley Centre HadISST1) are compared with long time-series of in situ measurements from ICES standard sections in the North Atlantic and Nordic Seas. The variability and trends derived from the two data sources are examined, and the usefulness of the products as a proxy for subsurface conditions is discussed.


2005 ◽  
Vol 83 (10) ◽  
pp. 1248-1256 ◽  
Author(s):  
J. López-Pujol ◽  
F.-M. Zhang ◽  
S. Ge

Allozyme electrophoresis was used to evaluate the levels of genetic diversity and population genetic structure of the critically endangered Clematis acerifolia Maximowicz (Ranunculaceae), a narrow endemic species in China. On the basis of variation at 19 putative loci in nine populations covering the entire distribution of this species, low values of genetic diversity were detected (P = 20.5%, A = 1.27, and He = 0.072). A significant deficiency of heterozygotes was found in all populations. Most loci showed deviations from the Hardy–Weinberg equilibrium, probably as a result of population genetic structuring. The high genetic divergence among populations (FST = 0.273) can be interpreted as an effect of the extinction of local populations and genetic drift within extant populations, and has probably been enhanced by habitat fragmentation in recent decades. Threats to this species are mainly anthropogenic (road works, construction of holiday resorts, and extraction activities), although stochastic risks cannot be ignored. Therefore, to preserve extant genetic variation of C. acerifolia, in situ strategies, such as the preservation of its habitat or at least the most diverse populations, and ex situ measures, such as the collection and long-term storage of seeds, should be adopted.


2012 ◽  
Vol 5 (12) ◽  
pp. 3109-3117 ◽  
Author(s):  
G. W. Brailsford ◽  
B. B. Stephens ◽  
A. J. Gomez ◽  
K. Riedel ◽  
S. E. Mikaloff Fletcher ◽  
...  

Abstract. We present descriptions of the in situ instrumentation, calibration procedures, intercomparison efforts, and data filtering methods used in a 39-yr record of continuous atmospheric carbon dioxide (CO2) observations made at Baring Head, New Zealand. Located on the southern coast of the North Island, Baring Head is exposed to extended periods of strong air flow from the south with minimal terrestrial influence resulting in low CO2 variability. The site is therefore well suited for sampling air masses that are representative of the Southern Ocean region. Instrumental precision is better than 0.015 ppm (1-σ) on 1-Hz values. Comparisons to over 600 co-located flask samples, as well as laboratory based flask and cylinder comparison exercises, suggest that over recent decades compatibility with respect to the Scripps Institution of Oceanography (SIO) and World Meteorological Organisation (WMO) CO2 scales has been 0.3 ppm or better.


Author(s):  
Valentina Bobykina ◽  
Valentina Bobykina ◽  
Boris Chubarenko ◽  
Boris Chubarenko ◽  
Konstantin Karmanov ◽  
...  

For the first time, the quantitative characteristics of the Vistula Spit shore dynamics based on the ground-based monitoring data for 2002-2015 were presented. On the sea shore, 3 sections can be distinguished by the direction of coastal processes, i.e. the stable section to the north of the Strait of Baltiysk, the eroded 4-km section to the south of the Strait of Baltiysk, with maximum erosion rate up to 2 m/year; in the remaining area of the Spit (21 km) to the Polish border there is an alternation of stable, eroded and accumulative areas. Since 2011, a steady erosion (in the stable segments of the third section) and general weakening of the erosion rate (in the second section) have been recorded. 50% of the length of the lagoon shore was the subject to annual active erosion (0.2 - 1.4 m/year). The beaches of the sea and lagoon shores of the Vistula Spit were mainly composed of medium sands. The alongshore variability in particle size distribution on the sea and lagoon shores (according to the 2015 survey data) actually fail to correlate with long-term dynamic processes, with the exception of the steadily eroded 4-kilometer area on the sea coast to the south of the Strait of Baltiysk. Variations in the composition of sediment along the shore on the shoreline are most likely associated with the results of the latest wave processing (or storm processing and eolian transport in the case of an average beach sample).


2020 ◽  
Author(s):  
Luciana Fenoglio-Marc ◽  
Bernd Uebbing ◽  
Jürgen Kusche ◽  
Salvatore Dinardo

<p>A significant part of the World population lives in the coastal zone, which is affected by coastal sea level rise and extreme events. Our hypothesis is that the most accurate sea level height measurements are derived from the Synthetic Aperture Altimetry (SAR) mode. This study analyses the output of dedicated processing and assesses their impacts on the sea level change of the North-Eastern Atlantic. </p><p>It will be shown that SAR altimetry reduces the minimum usable distance from five to three kilometres when the dedicated coastal retrackers SAMOSA+ and SAMOSA++ are applied to data processed in SAR mode. A similar performance is achieved with altimeter data processed in pseudo low resolution mode (PLRM) when the Spatio-Temporal Altimeter sub-waveform Retracker (STAR) is used. Instead the Adaptive Leading Edge Sub-waveform retracker (TALES) applied to PLRM is less performant. SAR processed altimetry can recover the sea level heights with 4 cm accuracy up to 3-4 km distance to coast. Thanks to the low noise of SAR mode data, the instantaneous SAR and in-situ data have the highest agreement, with the smallest standard deviation of differences and the highest correlation. A co-location of the altimeter data near the tide gauge is the best choice for merging in-situ and altimeter data. The r.m.s. (root mean squared) differences between altimetry and in-situ heights remain large in estuaries and in coastal zone with high tidal regimes, which are still challenging regions. The geophysical parameters derived from CryoSat-2 and Sentinel-3A measurements have similar accuracy, but the different repeat cycle of the two missions locally affects the constructed time-series.</p><p>The impact of these new SAR observations in climate change studies is assessed by evaluating regional and local time series of sea level. At distances to coast smaller than 10 Kilometers the sea level change derived from SAR and LRM data is in good agreement. The long-term sea level variability derived from monthly time-series of LRM altimetry and of land motion-corrected tide gauges agrees within 1 mm/yr for half of in-situ German stations. The long-term sea level variability derived from SAR data show a similar behaviour with increasing length of the time series.</p><p> </p>


2016 ◽  
Author(s):  
Amanda H. Schmidt ◽  
Thomas B. Neilson ◽  
Paul R. Bierman ◽  
Dylan H. Rood ◽  
William B. Ouimet ◽  
...  

Abstract. In order to understand better if and where long-term erosion rates calculated using in situ 10Be are affected by contemporary changes in land use and attendant deep regolith erosion, we calculated erosion rates using measurements of in situ 10Be in quartz from 52 samples of river sediment collected from three tributaries of the Mekong River (median basin area = 46.5 km2). Erosion rates range from 12–209 mm/kyr with an area-weighted mean of 117 ± 49 mm/kyr (1 standard deviation) and median of 74 mm/kyr. We observed a decrease in the relative influence of human activity from our steepest and least altered watershed in the north to the most heavily altered landscapes in the south. In the areas of the landscape least disturbed by humans, erosion rates correlate best with measures of topographic steepness. In the most heavily altered landscapes, measures of modern land use correlate with 10Be-estimated erosions rates but topographic steepness parameters cease to correlate with erosion rates. We conclude that in some small watersheds we sampled, those with high rates and intensity of agricultural land use, that tillage and resultant erosion has excavated deeply enough into the regolith to deliver subsurface sediment to streams and thus raise apparent in situ 10Be-derived erosion rates by as much as 2.5 times over background rates had the watersheds not been disturbed.


2011 ◽  
Vol 8 (1) ◽  
pp. 1609-1663 ◽  
Author(s):  
W. A. Dorigo ◽  
W. Wagner ◽  
R. Hohensinn ◽  
S. Hahn ◽  
C. Paulik ◽  
...  

Abstract. In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status January 2011), the ISMN contains data of 16 networks and more than 500 stations located in the North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.


2020 ◽  
Vol 20 (13) ◽  
pp. 8157-8179 ◽  
Author(s):  
Andreas Petzold ◽  
Patrick Neis ◽  
Mihal Rütimann ◽  
Susanne Rohs ◽  
Florian Berkes ◽  
...  

Abstract. The vertical distribution and seasonal variation of water vapour volume mixing ratio (H2O VMR), of relative humidity with respect to ice (RHice) and particularly of regions with ice-supersaturated air masses (ISSRs) in the extratropical upper troposphere and lowermost stratosphere are investigated at northern mid-latitudes over the eastern North American, North Atlantic and European regions for the period 1995 to 2010. Observation data originate from regular and continuous long-term measurements on board instrumented passenger aircraft in the framework of the European research programme MOZAIC (1994–2010), which continues as the European research infrastructure IAGOS (from 2011). Data used in our study result from collocated observations of O3 VMR, RHice and temperature, as well as H2O VMR deduced from RHice and temperature data. The in situ observations of H2O VMR and RHice with a vertical resolution of 30 hPa (< 750 m at the extratropical tropopause level) and a horizontal resolution of 1 km resolve detailed features of the distribution of water vapour and ice-supersaturated air relative to the thermal tropopause, including their seasonal and regional variability and chemical signatures at various distances from the tropopause layer. Annual cycles of the investigated properties document the highest H2O VMR and temperatures above the thermal tropopause in the summer months, whereas RHice above the thermal tropopause remains almost constant in the course of the year. Over all investigated regions, upper tropospheric air masses close to the tropopause level are nearly saturated with respect to ice and contain a significant fraction of ISSRs with a distinct seasonal cycle of minimum values in summer (30 % over the ocean, 20 %–25 % over land) and maximum values in late winter (35 %–40 % over both land and ocean). Above the thermal tropopause, ISSRs are occasionally observed with an occurrence probability of 1.5 ± 1.1 %, whereas above the dynamical tropopause at 2 PVU (PVU: potential vorticity unit), the occurrence probability increases 4-fold to 8.4 ± 4.4 %. In both coordinate systems related to tropopause height (TPH), the ISSR occurrence probabilities drop to values below 1 % for the next higher air mass layer with pressure levels p < pTPH−15 hPa. For both tropopause definitions, the tropospheric nature or fingerprint, based on O3 VMR, indicates the continuing tropospheric influence on ISSRs inside and above the respective tropopause layer. For the non-ISSRs, however, the stratospheric nature is clearly visible above the thermal tropopause, whereas above the dynamical tropopause the air masses show a still substantial tropospheric influence. For all three regions, seasonal deviations from the long-term annual cycle of ISSR occurrence show no significant trends over the observation period of 15 years, whereas a statistically significant correlation between the North Atlantic Oscillation (NAO) index and the deviation of ISSR occurrence from the long-term average is observed for the North Atlantic region but not for the eastern North American and European regions.


Sign in / Sign up

Export Citation Format

Share Document