scholarly journals The temperature dependence of the zeta potential in porous media

Author(s):  
Luong Duy Thanh

The measurements of the zeta potential of five consolidated samples including natural and artificial ceramic rocks saturated with 5.0×10-3 M NaCl electrolyte at different temperatures have been reported. The zeta potential obtained in this work is always negative and increases in magnitude with increasing temperature for all samples (an average increase of the zeta potential of 0.4 mV/ oC in magnitude). The experimental results are in good agreement with previously published data. The experimental data is then explained by a theoretical model. It is shown that the model is able to reproduce the main trend of the experimental data from our work and from published articles.

Author(s):  
Luong Duy Thanh

In this work, the fractal model for the streaming potential coefficient in porous media recently published has been examined by calculating the zeta potential from the measured streaming potential coefficient. Obtained values of the zeta potential are then compared with experimental data. Additionally, the variation of the streaming potential coefficient with fluid electrical conductivity is predicted from the model. The results show that the model predictions are in good agreement with the experimental data available in literature. The comparison between the proposed model and the Helmholtz-Smoluchowski (HS) equation is also carried out. It is seen that that the prediction from the proposed model is quite close to what is expected from the HS equation, in particularly at the high fluid conductivity or large grain diameters. Therefore, the model can be an alternative approach to obtain the zeta potential from the streaming potential measurements.


2009 ◽  
Vol 615-617 ◽  
pp. 311-314 ◽  
Author(s):  
W.S. Loh ◽  
J.P.R. David ◽  
B.K. Ng ◽  
Stanislav I. Soloviev ◽  
Peter M. Sandvik ◽  
...  

Hole initiated multiplication characteristics of 4H-SiC Separate Absorption and Multiplication Avalanche Photodiodes (SAM-APDs) with a n- multiplication layer of 2.7 µm were obtained using 325nm excitation at temperatures ranging from 300 to 450K. The breakdown voltages increased by 200mV/K over the investigated temperature range, which indicates a positive temperature coefficient. Local ionization coefficients, including the extracted temperature dependencies, were derived in the form of the Chynoweth expression and were used to predict the hole multiplication characteristics at different temperatures. Good agreement was obtained between the measured and the modeled multiplication using these ionization coefficients. The impact ionization coefficients decreased with increasing temperature, corresponding to an increase in breakdown voltage. This result agrees well with the multiplication characteristics and can be attributed to phonon scattering enhanced carrier cooling which has suppressed the ionization process at high temperatures. Hence, a much higher electric field is required to achieve the same ionization rates.


1969 ◽  
Vol 59 (1) ◽  
pp. 399-407
Author(s):  
Robert B. Herrmann

Abstract The propagation of Rayleigh waves with periods of 0.4 to 2.0 seconds across the Cincinnati arch is investigated. The region of investigation includes southern Indiana and Ohio and northern Kentucky. The experimental data for all paths are fitted by a three-layer model of varying layer thickness but of fixed velocity in each layer. The resulting inferred structural picture is in good agreement with the known basement trends of the region. The velocities of the best fitting theoretical model agree well with velocity-depth data from a well in southern Indiana.


1994 ◽  
Author(s):  
K. Imanari

A theoretical model is proposed for the spanwise mixing caused by periodic incoming wakes in the context of turbulent diffusion in axial-flow compressors prior to repeating-stage conditions. The model was used to predict the spanwise mixing coefficients across a stator of a single-stage compressor without IGVs. The correctness of the theory was demonstrated by the results that the predicted values were in good agreement with the associated experimental data.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
J. Michael Owen

Ingress of hot gas through the rim seals of gas turbines can be modeled theoretically using the so-called orifice equations. In Part I of this two-part paper, the orifice equations were derived for compressible and incompressible swirling flows, and the incompressible equations were solved for axisymmetric rotationally induced (RI) ingress. In Part II, the incompressible equations are solved for nonaxisymmetric externally induced (EI) ingress and for combined EI and RI ingress. The solutions show how the nondimensional ingress and egress flow rates vary with Θ0, the ratio of the flow rate of sealing air to the flow rate necessary to prevent ingress. For EI ingress, a “saw-tooth model” is used for the circumferential variation of pressure in the external annulus, and it is shown that ε, the sealing effectiveness, depends principally on Θ0; the theoretical variation of ε with Θ0 is similar to that found in Part I for RI ingress. For combined ingress, the solution of the orifice equations shows the transition from RI to EI ingress as the amplitude of the circumferential variation of pressure increases. The predicted values of ε for EI ingress are in good agreement with the available experimental data, but there are insufficient published data to validate the theory for combined ingress.


Author(s):  
J. Michael Owen

Ingress of hot gas through the rim seals of gas turbines can be modelled theoretically using the so-called orifice equations. In Part 1 (ASME GT 2009-59121) of this two-part paper, the orifice equations were derived for compressible and incompressible swirling flow, and the incompressible equations were solved for axisymmetric rotationally-induced (RI) ingress. In Part 2, the incompressible equations are solved for non-axisymmetric externally-induced (EI) ingress and for combined EI and RI ingress. The solutions show how the nondimensional ingress and egress flow rates vary with Θ0, the ratio of the flow rate of sealing air to the flow rate necessary to prevent ingress. For EI ingress, a ‘saw-tooth model’ is used for the circumferential variation of pressure in the external annulus, and it is shown that ε, the sealing effectiveness, depends principally on Θ0; the theoretical variation of ε with Θ0 is similar to that found in Part 1 for RI ingress. For combined ingress, the solution of the orifice equations shows the transition from RI to EI ingress as the amplitude of the circumferential variation of pressure increases. The predicted values of ε for EI ingress are in good agreement with available experimental data, but there are insufficient published data to validate the theory for combined ingress.


Author(s):  
A Robson ◽  
T Grassie ◽  
J Kubie

A full theoretical model of a low-temperature differential Stirling engine is developed in the current paper. The model, which starts from the first principles, gives a full differential description of the major components of the engine: the behaviour of the gas in the expansion and the compression spaces; the behaviour of the gas in the regenerator; the dynamic behaviour of the displacer; and the power piston/flywheel assembly. A small fully instrumented engine is used to validate the model. The theoretical model is in good agreement with the experimental data, and describes well all features exhibited by the engine.


1989 ◽  
Vol 111 (3) ◽  
pp. 670-674 ◽  
Author(s):  
J. Seyed-Yagoobi ◽  
J. C. Chato ◽  
J. M. Crowley ◽  
P. T. Krein

An induction electrohydrodynamic (EHD) pump in axisymmetric, vertical configuration was designed and built. The flow rates were measured for various temperature profiles and several values of frequency, voltage, wavelength, and electric conductivity. The experimental data are generally in good agreement with the theoretical model presented in Part 1. With the present apparatus at relatively low voltages, velocities four times higher than natural circulation velocity are easily obtained. The external pressure load and entrance temperature profile play important roles on the operation of the pump and must be considered carefully in the design.


1986 ◽  
Vol 64 (7) ◽  
pp. 763-767 ◽  
Author(s):  
I. R. Dagg ◽  
A. Anderson ◽  
S. Yan ◽  
W. Smith ◽  
C. G. Joslin ◽  
...  

A recently developed theory for collision-induced absorption in methane is compared with experimental results over a wider spectral range and at lower temperatures than previously reported. The present experimental results covering the frequency range below 400 cm−1 exhibit good agreement with other recently published data. The theory shows excellent agreement with experiment in the low-frequency region below approximately 200 cm−1 but underestimates the experimental data somewhat at higher frequencies. Possible theoretical reasons for this discrepancy are given. The theory represents a simple method of obtaining a good estimate of the collision-induced absorption spectra of methane in this frequency region and for extrapolating to lower temperatures for which experimentation is not feasible. In addition, the moments α1 and γ1are compared with earlier determinations and indicate good agreement with the previously obtained values for the octupole and hexadecapole moments of methane.


2015 ◽  
Vol 29 (27) ◽  
pp. 1550161 ◽  
Author(s):  
Kuldeep Kholiya ◽  
Jeewan Chandra

On the basis of the thermal equation-of-state a simple theoretical model is developed to study the pressure dependence of melting temperature. The model is then applied to compute the high pressure melting curve of 10 metals (Cu, Mg, Pb, Al, In, Cd, Zn, Au, Ag and Mn). It is found that the melting temperature is not linear with pressure and the slope [Formula: see text] of the melting curve decreases continuously with the increase in pressure. The results obtained with the present model are also compared with the previous theoretical and experimental data. A good agreement between theoretical and experimental result supports the validity of the present model.


Sign in / Sign up

Export Citation Format

Share Document