scholarly journals Antagonistic Potential of Dairy Origin Enterococcus faecium Against Multidrug-Resistant Foodborne Pathogens

2021 ◽  
Vol 26 (2) ◽  
pp. 2406-2415
Author(s):  
SANA WAHEED ◽  
◽  
MUHAMMAD HIDAYAT RASOOL ◽  
BILAL ASLAM ◽  
SAIMA MUZAMMIL ◽  
...  

Probiotic potential of Enterococcus spp. is widely investigated around the globe. The biochemically and molecular characterized E. faecium strains isolated from Dahi (continental yogurt) were evaluated to tolerate simulated gastric environment, bile, sodium chloride, temperature, and pH. The safety was assessed by disc diffusion, broth microdilution, antibiotic resistance genes screening, and hemolytic ability. Enterococci survived simulated gastrointestinal conditions and depicted growth at temperature (15 to ≥42°C), pH (≤2.5 to ≥9.5), 0.3% bile salt and 3% NaCl. All strains were sensitive to ampicillin, vancomycin, kanamycin, gentamicin, streptomycin, tetracycline and ciprofloxacin and harbored vanR, vanX, qnrB2, qnrS, tetK, and tetW resistance genes. E. faecium strains inhibited the E. coli (85%) and S. Typhi (50%) whereas the 10% cell-free culture supernatant (CFCS) of E. faecium halted the growth of E. coli while 15% CFCS completely suppressed S. Typhi. The cell-free culture supernatant retained antibacterial nature after pH and proteinase K treatment, however, it lost activity after heat treatment (≥95°C). The genetic screening revealed that all isolates are capable to produce putrescine biogenic amine. Further assessment of strains for lack of infectivity, cytotoxicity in animals, adhesion to Caco-2 cells and characterization of enterocins is essential to conclude the probiotic potential of these strains.

2010 ◽  
Vol 76 (7) ◽  
pp. 2295-2303 ◽  
Author(s):  
Wei-Ren Dong ◽  
Li-Xin Xiang ◽  
Jian-Zhong Shao

ABSTRACT The use of antibiotic resistance genes in plasmids causes potential biosafety and clinical hazards, such as the possibility of horizontal spread of resistance genes or the rapid emergence of multidrug-resistant pathogens. This paper introduces a novel auxotrophy complementation system that allowed plasmids and host cells to be effectively selected and maintained without the use of antibiotics. An Escherichia coli strain carrying a defect in NAD de novo biosynthesis was constructed by knocking out the chromosomal quinolinic acid phosphoribosyltransferase (QAPRTase) gene. The resistance gene in the plasmids was replaced by the QAPRTase gene of E. coli or the mouse. As a result, only expression of the QAPRTase gene from plasmids can complement and rescue E. coli host cells in minimal medium. This is the first time that a vertebrate gene has been used to construct a nonantibiotic selection system, and it can be widely applied in DNA vaccine and gene therapy. As the QAPRTase gene is ubiquitous in species ranging from bacteria to mammals, the potential environmental biosafety problems caused by horizontal gene transfer can be eliminated.


2018 ◽  
Vol 81 (8) ◽  
pp. 1339-1345 ◽  
Author(s):  
KAFEEL AHMAD ◽  
FARYAL KHATTAK ◽  
AMJAD ALI ◽  
SHAISTA RAHAT ◽  
SHAZIA NOOR ◽  
...  

ABSTRACT We report the prevalence of extended-spectrum β-lactamases and carbapenemases in Escherichia coli isolated from retail chicken in Peshawar, Pakistan. One hundred E. coli isolates were recovered from retail chicken. Antibiotic susceptibility testing was carried out against ampicillin, chloramphenicol, kanamycin, nalidixic acid, cephalothin, gentamicin, sulfamethoxazole-trimethoprim, and streptomycin. Phenotypic detection of β-lactamase production was analyzed through double disc synergy test using the antibiotics amoxicillin-clavulanate, cefotaxime, ceftazidime, cefepime, and aztreonam. Fifty multidrug-resistant isolates were screened for detection of sul1, aadA, cmlA, int, blaTEM, blaSHV, blaCTX-M, blaOXA-10, blaVIM, blaIMP, and blaNDM-1 genes. Resistance to ampicillin, nalidixic acid, kanamycin, streptomycin, cephalothin, sulfamethoxazole-trimethoprim, gentamicin, cefotaxime, ceftazidime, aztreonam, cefepime, amoxicillin-clavulanate, and chloramphenicol was 92, 91, 84, 73, 70, 67, 53, 48, 40, 39, 37, 36, and 23% respectively. Prevalence of sul1, aadA, cmlA, int, blaTEM, blaCTX-M, blaIMP, and blaNDM-1 was 78% (n = 39), 76% (n = 38), 20% (n = 10), 90% (n = 45), 74% (n = 37), 94% (n = 47), 22% (n = 11), and 4% (n = 2), respectively. blaSHV, blaOXA-10, and blaVIM were not detected. The coexistence of multiple antibiotic resistance genes in multidrug-resistant strains of E. coli is alarming. Hence, robust surveillance strategies should be developed with a focus on controlling the spread of antibiotic resistance genes via the food chain.


2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Edgarthe Priscilla Ngaiganam ◽  
Isabelle Pagnier ◽  
Wafaa Chaalal ◽  
Thongpan Leangapichart ◽  
Selma Chabou ◽  
...  

Abstract Background We investigate here the presence of multidrug-resistant bacteria isolated from stool samples of yellow-legged gulls and chickens (n = 136) in urban parks and beaches of Marseille, France. Bacterial isolation was performed on selective media, including MacConkey agar with ceftriaxone and LBJMR medium. Antibiotic resistance genes, including extended-spectrum β-lactamases (ESBL) (i.e. blaCTX-M, blaTEM and blaSHV), carbapenemases (blaKPC, blaVIM, blaNDM, blaOXA-23, blaOXA-24, blaOXA-48 and blaOXA-58) and colistin resistance genes (mcr-1 to mcr-5) were screened by real-time PCR and standard PCR and sequenced when found. Results Of the 136 stools samples collected, seven ESBL-producing Gram-negative bacteria (BGN) and 12 colistin-resistant Enterobacteriaceae were isolated. Among them, five ESBL-producing Escherichia coli and eight colistin-resistant Hafnia alvei strains were identified. Four blaTEM-1 genes were detected in yellow-legged gulls and chickens. Three CTX-M-15 genes were detected in yellow-legged gulls and pigeons, and one CTX-M-1 in a yellow-legged gull. No mcr-1 to mcr-5 gene were detected in colistin-resistant isolates. Genotyping of E. coli strains revealed four different sequence types already described in humans and animals and one new sequence type. Conclusions Urban birds, which are believed to have no contact with antibiotics appear as potential source of ESBL genes. Our findings highlight the important role of urban birds in the proliferation of multidrug-resistant bacteria and also the possible zoonotic transmission of such bacteria from wild birds to humans.


2021 ◽  
Vol 9 (8) ◽  
pp. 1613
Author(s):  
Julian A. Paganini ◽  
Nienke L. Plantinga ◽  
Sergio Arredondo-Alonso ◽  
Rob J. L. Willems ◽  
Anita C. Schürch

The incidence of infections caused by multidrug-resistant E. coli strains has risen in the past years. Antibiotic resistance in E. coli is often mediated by acquisition and maintenance of plasmids. The study of E. coli plasmid epidemiology and genomics often requires long-read sequencing information, but recently a number of tools that allow plasmid prediction from short-read data have been developed. Here, we reviewed 25 available plasmid prediction tools and categorized them into binary plasmid/chromosome classification tools and plasmid reconstruction tools. We benchmarked six tools (MOB-suite, plasmidSPAdes, gplas, FishingForPlasmids, HyAsP and SCAPP) that aim to reliably reconstruct distinct plasmids, with a special focus on plasmids carrying antibiotic resistance genes (ARGs) such as extended-spectrum beta-lactamase genes. We found that two thirds (n = 425, 66.3%) of all plasmids were correctly reconstructed by at least one of the six tools, with a range of 92 (14.58%) to 317 (50.23%) correctly predicted plasmids. However, the majority of plasmids that carried antibiotic resistance genes (n = 85, 57.8%) could not be completely recovered as distinct plasmids by any of the tools. MOB-suite was the only tool that was able to correctly reconstruct the majority of plasmids (n = 317, 50.23%), and performed best at reconstructing large plasmids (n = 166, 46.37%) and ARG-plasmids (n = 41, 27.9%), but predictions frequently contained chromosome contamination (40%). In contrast, plasmidSPAdes reconstructed the highest fraction of plasmids smaller than 18 kbp (n = 168, 61.54%). Large ARG-plasmids, however, were frequently merged with sequences derived from distinct replicons. Available bioinformatic tools can provide valuable insight into E. coli plasmids, but also have important limitations. This work will serve as a guideline for selecting the most appropriate plasmid reconstruction tool for studies focusing on E. coli plasmids in the absence of long-read sequencing data.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 344
Author(s):  
Momna Rubab ◽  
Deog-Hwan Oh

Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen associated with human gastroenteritis outbreaks. Extensive use of antibiotics in agriculture selects resistant bacteria that may enter the food chain and potentially causes foodborne illnesses in humans that are less likely to respond to treatment with conventional antibiotics. Due to the importance of antibiotic resistance, this study aimed to investigate the combination of phenotypic and genotypic antibiotic resistance in STEC isolates belonging to serogroups O26, O45, O103, O104, O111, O121, O145, and O157 using disc diffusion and polymerase chain reaction (PCR), respectively. All strains were phenotypically resistant to at least one antibiotic, with 100% resistance to erythromycin, followed by gentamicin (98%), streptomycin (82%), kanamycin (76%), and ampicillin (72%). The distribution of antibiotic resistance genes (ARGs) in the STEC strains was ampC (47%), aadA1 (70%), ere(A) (88%), blaSHV (19%), blaCMY (27%), aac(3)-I (90%), and tet(A) (35%), respectively. The results suggest that most of the strains were multidrug-resistant (MDR) and the most often observed resistant pattern was of aadA1, ere(A), and aac(3)-I genes. These findings indicate the significance of monitoring the prevalence of MDR in both animals and humans around the globe. Hence, with a better understanding of antibiotic genotypes and phenotypes among the diverse STEC strains obtained, this study could guide the administration of antimicrobial drugs in STEC infections when necessary.


Author(s):  
Juan He ◽  
Cui Li ◽  
Pengfei Cui ◽  
Hongning Wang

Abstract Background: This study was aimed to investigate the prevalence and structure of Tn7-like in Enterobacteriaceae from livestock and poultry as well as their possible role as reservoir of antibiotic resistance genes (ARGs).Methods: Polymerase chain reaction (PCR) and DNA sequencing analyses were used for the characterization of Tn7-like, associated integrons and ARGs. The antimicrobial resistance profile of the isolates was examined by using disc diffusion test.Results: Three hundred and seventy-eight Tn7-like-positive strains of Enterobacteriaceae were isolated, and included E. coli (128), Proteus(150), K. pneumonia(17), Salmonella(13), M. morganii (21) and A. baumannii(1), wherein high resistance was observed for Trimethoprim/Sulfamethoxazole and Streptomycin, and fifty percent of the strains were multidrug-resistant. Integrons class 2 were detected in all of the isolates and there are high frequency mutation sites especially in 535, a stop mutation. Variable region of class 2 integrons carried same gene cassettes, namely aadA1-sat2-dfrA1. From the 378 isolated strains, we found a new type of Tn7-like on a plasmid, named Tn6765.Conclusions: These findings proved that the Tn7-like can contribute to the horizontal transmission of antibiotic resistant genes in livestock and poultry. As potential vessels for antibiotic resistance genes (ARGs), Tn7-like could not be ignored due to their efficient transfer ability in environments.


2021 ◽  
Vol 88 (1) ◽  
Author(s):  
Bo Yu ◽  
Yanan Zhang ◽  
Li Yang ◽  
Jinge Xu ◽  
Shijin Bu

This study was carried out to investigate the resistance phenotypes and resistance genes of Escherichia coli from swine in Guizhou, China. A total of 47 E. coli strains isolated between 2013 and 2018 were tested using the Kirby–Bauer (K–B) method to verify their resistance to 19 common clinical antimicrobials. Five classes consisting of 29 resistance genes were detected using polymerase chain reaction. The status regarding extended-spectrum β-lactamase (ESBL) and the relationship between ESBL CTX-M-type β-lactamase genes and plasmid-mediated quinolone resistance (PMQR) genes were analysed. A total of 46 strains (97.9%) were found to be multidrug resistant. Amongst them, 27 strains (57.4%) were resistant to more than eight antimicrobials, and the maximum number of resistant antimicrobial agents was 16. Twenty antibiotic resistance genes were detected, including six β-lactamase genes blaTEM (74.5%), blaCTX-M-9G (29.8%), blaDHA (17.0%), blaCTX-M-1G (10.6%), blaSHV (8.5%), blaOXA (2.1%), five aminoglycoside-modifying enzyme genes aac(3′)-IV (93.6%), aadA1 (78.7%), aadA2 (76.6%), aac(3′)-II c (55.3%), aac(6′)-Ib (2.1%) and five amphenicol resistance genes floR (70.2%), cmlA (53.2%), cat2 (10.6%), cat1 (6.4%), cmlB (2.1%), three PMQR genes qnrS (55.3%), oqxA (53.2%), qepA (27.7%) and polypeptide resistance gene mcr-1 (40.4%). The detection rate of ESBL-positive strains was 80.9% (38/47) and ESBL TEM-type was the most abundant ESBLs. The percentage of the PMQR gene in blaCTX-M-positive strains was high, and the detection rate of blaCTX-M-9G was the highest in CTX-M type. It is clear that multiple drug resistant E. coli is common in healthy swine in this study. Extended-spectrum β-lactamase is very abundant in the E. coli strains isolated from swine and most of them are multiple compound genotypes.


2015 ◽  
Vol 9 (01) ◽  
pp. 035-041 ◽  
Author(s):  
Sorin Daniel Dan ◽  
Alexandra Tabaran ◽  
Liora Mihaiu ◽  
Marian Mihaiu

Introduction: The occurrence of pathogenic strains in poultry meat is of growing concern in Romania. Another problem found on a global level is the continuous increase of antimicrobial resistance in bacteria isolated from food. This study aimed to evaluate the prevalence of pathogenic bacteria in poultry carcasses obtained in Romania in 2012–2013 and to reveal the most prevalent patterns of antimicrobial resistance in the isolated strains. Methodology: A total of 144 broiler chicken carcasses were evaluated according to classical microbiological methods. The DNA was extracted from the bacterial colonies and the resistance genes were identified by PCR. Results: In 2012, 47.2% of the samples revealed at least one of the following bacteria: Campylobacter jejuni (9.72%; n = 7), Salmonella enterica serotype Enteritidis (4.17%; n = 3), Listeria monocytogenes (15.28%; n = 11), and Escherichia coli (16.67%; n = 12). In 2013, the number of positive samples of pathogenic bacteria decreased, although Campylobacter jejuni was isolated in a higher percentage (20.8% vs. 9.72%). The percentage of multidrug-resistant (MDR) bacteria was high (23%); the most prevalent pattern included resistance to tetracycline, sulfonamides, and quinolones/fluoroquinolones. All the resistant Salmonella and E. coli strains were tested for the presence of characteristic resistance genes (Kn, blaTEM, tetA, tetB, tetG, DfrIa, aadA1a, Sul) and revealed that these isolates represent an important reservoir in the spread of this phenomenon. Conclusions: Our findings suggest that Romania urgently needs an integrated surveillance system within the entire chain, for drug-resistant pathogens isolated from poultry meat.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Beatus Lyimo ◽  
Joram Buza ◽  
Murugan Subbiah ◽  
Sylivester Temba ◽  
Honest Kipasika ◽  
...  

The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistantE. coliisolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate anduidAPCR was used to confirm the identity of strains asE. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10−1to 10−7. Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people.


Sign in / Sign up

Export Citation Format

Share Document