scholarly journals An Automatic Drawing Spur Gears Based on AutoCAD Program

2021 ◽  
Vol 28 (1) ◽  
pp. 64-70
Author(s):  
Najat Hamed

In this research, a computer-aided drawing system of spur gear was developed. An auto LISP programming language embedded within the AutoCAD design package was used to develop a new program to create a 3D model of a spur gear in two main stages. In the first stage, the developed program of spur gear allows automatic 2D spur gear drawing generation using the technique that depends on the half tooth thickness at the pitch diameter. In the second stage, inner profiles of a 2D spur gear views are used to create a 3D model of a spur gear. The developed program helpful for the user in drawing the spur gear modelling, due to less work and time to be spent when compared with the conventional approach, and it also improves a high degree of accuracy of spur gear modelling. The spur gear resulting from the prepared gear drawing system can also work with other popular CAD software.

1990 ◽  
Vol 112 (4) ◽  
pp. 590-595 ◽  
Author(s):  
J. H. Steward

In this paper, the requirements for an accurate 3D model of the tooth contact-line load distribution in real spur gears are summarized. The theoretical results (obtained by F.E.M.) for the point load compliance of wide-faced spur gear teeth are set out. These values compare well with experimental data obtained from tests on a large spur gear (18 mm module, 18 teeth).


Author(s):  
M.A. Lyubchenko ◽  
Martinez Juan Marcos Garcia ◽  
Quintana Laura Angelica Samora ◽  
V.S. Syromyatnikov

Spur gear is used in machines to transmit rotary motion. Due to its simple design, reliability and compactness, it is widely used in technical devices — clocks, conveyors, cars. Two wheels of such a transmission have a constant gear ratio and high efficiency. The first performance criterion is the contact stress fatigue strength of the teeth. The second one is the tooth bending fatigue strength. Manual calculation of a spur gear is a difficult task due to the large number of formulas and conditions. The design area is limited to a small number of options that are not always optimal. It was proposed to expand the design boundaries to hundreds or thousands of options using a computer. Combinations of parameters (modulus, wheel width, number of teeth, material, etc.) form a variety of spur gears with different characteristics: dimensions, strength, weight, etc. The statistical analysis found hidden dependencies between characteristics and initial parameters. On the basis of regression metamodels, the relative importance of parameters for individual characteristics was established. When searching for optimal gears, the Desirability function D was applied with meta-models as arguments. On the basis of the existing standards, a system for computer-aided design of transmissions and statistical analysis of their performance has been developed. As a result of the study, the area of efficient spur gears with optimal characteristics was determined.


2018 ◽  
Vol 8 (8) ◽  
pp. 1338 ◽  
Author(s):  
José Rojas-Sola ◽  
Eduardo De la Morena-De la Fuente

This article analyzes the first self-propelled floating dredging machine designed and executed by Agustín de Betancourt in 1810 to dredge the port of Kronstadt (Russia). With this objective, a study of computer-aided engineering (CAE) has been carried out using the parametric software Autodesk Inventor Professional, consisting of a static analysis using the finite element method, of the 3D model which is reliable under operating conditions. The results have shown that the system of inertia drums proposed by Betancourt manages to dissipate the tensions between the different elements, locating the highest stresses in the links of the bucket rosary, specifically at the point of contact between links. Similarly, the maximum displacements and the greatest deformations (always associated with these points of greater stress), are far from reaching the limits of breakage of the material used in its construction, as well as the safety coefficient of the invention, confirming that the mechanism was oversized, as was generally the case at the time. This analysis highlights the talent of the Spanish engineer and his mastery of mechanics, in an invention, the first of its kind worldwide, which served the Russian Empire for many years.


2015 ◽  
Vol 57 (3) ◽  
Author(s):  
Muhammad Shafique ◽  
Philip Axer ◽  
Christoph Borchert ◽  
Jian-Jia Chen ◽  
Kuan-Hsun Chen ◽  
...  

AbstractThis paper presents a multi-layer software reliability approach that leverages multiple software layers (e. g., programming language, compiler, and operating system) to improve the overall system reliability considering unreliable or partly-reliable hardware. We present a comprehensive design flow that integrates multiple software layers while accounting for the knowledge from lower hardware layers. We show how multiple software layers synergistically operate to achieve a high degree of reliability.


2019 ◽  
Vol 4 (2) ◽  
pp. 1-5
Author(s):  
Ezekiel K. Olatunji ◽  
John B. Oladosu ◽  
Odetunji A. Odejobi ◽  
Stephen O. Olabiyisi

AbstractThe development of an African native language-based programming language, using Yoruba as a case study, is envisioned. Programming languages based on the lexicons of indigenous African languages are rare to come by unlike those based on Asian and / or European languages. Availability of programming languages based on lexicons of African indigenous language would facilitate comprehension of problem-solving processes using computer by indigenous learners and teachers as confirmed by research results. In order to further assess the relevance, usefulness and needfulness of such a programming language, a preliminary needs assessment survey was carried out. The needs assessment was carried out through design of a structured questionnaire which was administered to 130 stakeholders in computer profession and computer education; including some staffers and learners of some primary, secondary and tertiary educational institutions in Oyo and Osun states of Nigeria, Africa. The responses to the questionnaire were analyzed using descriptive statistics. The analysis of the responses to the questionnaire shows that 89% of the respondents to the questionnaire expressed excitement and willingness to program or learn programming in their mother tongue-based programming language, if such a programming language is developed. This result shows the high degree of relevance, usefulness and needfulness of a native language-based programming language as well as the worthwhileness of embarking on development of such a programming language.


2018 ◽  
Vol 30 (3) ◽  
pp. 332-346
Author(s):  
Zhijia Dong ◽  
Gaoming Jiang ◽  
Guoming Huang ◽  
Honglian Cong

Purpose The virtual display of 3D garment is one of the most important features in a computer-aided garment design system. The purpose of this paper is to present a novel web-based 3D virtual display framework for the online design of warp-knitted seamless garment using the latest WebGL and HTML5 technologies. Design/methodology/approach Based on the feature-based parametric 3D human body model, the 3D model of skin-tight warp-knitted seamless garment is established using the geometric modeling method. By applying plane parameterization technology, the 3D garment model is then projected into corresponding 2D prototype pattern and a texture-mapping relationship is obtained. Finally, an online 3D virtual display application framework for warp-knitted seamless garment is implemented on modern WebGL-enabled web browsers using the latest WebGL and HTML5 technologies, which allow garment designers to globally access without installing any additional software or plugin. Findings Based on the 2D/3D model of warp-knitted seamless garment, an online 3D virtual display application running on modern WebGL-enabled web browser is implemented using the latest Javascript, WebGL and HTML5 technologies, which is proven to be an effective way for building the web-based 3D garment CAD systems. Originality/value This paper provides a parametric design method for warp-knitted seamless garment 2D/3D model, and web-based online virtual display of 3D warp-knitted seamless garment is implemented for the first time, which establishes the foundation for the web-based online computer-aided warp-knitted seamless garment design system.


2021 ◽  
Vol 263 (5) ◽  
pp. 1275-1285
Author(s):  
Joshua Götz ◽  
Sebastian Sepp ◽  
Michael Otto ◽  
Karsten Stahl

One important source of noise in drive trains are transmissions. In numerous applications, it is necessary to use helical instead of spur gear stages due to increased noise requirements. Besides a superior excitation behaviour, helical gears also show additional disadvantageous effects (e.g. axial forces and tilting moments), which have to be taken into account in the design process. Thus, a low noise spur gear stage could simplify design and meet the requirements of modern mechanical drive trains. The authors explore the possibility of combining the low noise properties of helical gears with the advantageous mechanical properties of spur gears by using spur gears with variable tip diameter along the tooth width. This allows the adjustment of the total length of active lines of action at the beginning and end of contact and acts as a mesh stiffness modification. For this reason, several spur gear designs are experimentally investigated and compared with regard to their excitation behaviour. The experiments are performed on a back-to-back test rig and include quasi-static transmission error measurements under load as well as dynamic torsional vibration measurements. The results show a significant improvement of the excitation behaviour for spur gears with variable tip diameter.


2019 ◽  
Vol 20 (6) ◽  
pp. 626 ◽  
Author(s):  
Guillaume Vouaillat ◽  
Jean-Philippe Noyel ◽  
Fabrice Ville ◽  
Xavier Kleber ◽  
Sylvain Rathery

The study of rolling contact fatigue in spur gears requires a good comprehension of all the phenomena occurring at the material scale. On a numerical point of view, a realistic representation of the material and of the load repartition function of the local micro-geometries is needed. However the resulting models are often complex and time-consuming. So, this work aims at developing a model meeting these specificities. Thus, different sections of the spur gear material granular geometry are simulated first. Secondly, the contact pressure fields are computed accurately relatively to the simulated surface microgeometry. Then, the influence of several parameters on their rolling contact fatigue life is highlighted. Among friction, sliding coefficient, load variation and roughness, these individual or combined parameters are taken into account in the model, tested and their impact stressed out. Finally, a fatigue criteria based on rolling contact fatigue micro-cracks nucleation at grain boundaries is proposed in order to compare simulations and influencing parameters to the reference.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaohe Deng ◽  
Lin Hua ◽  
Xinghui Han

A design method for the geometric shape and modification of asymmetric spur gear was proposed, in which the geometric shape and modification of the gear can be obtained directly according to the rack-cutter profile. In the geometric design process of the gear, a rack-cutter with different pressure angles and fillet radius in the driving side and coast side was selected, and the generated asymmetric spur gear profiles also had different pressure angles and fillets accordingly. In the modification design of the gear, the pressure angle modification of rack-cutter was conducted firstly and then the corresponding modified involute gear profile was obtained. The geometric model of spur gears was developed using computer-aided design, and the meshing process was analyzed using finite element simulation method. Furthermore, the transmission error and load sharing ratio of unmodified and modified asymmetric spur gears were investigated. Research results showed that the proposed gear design method was feasible and desired spur gear can be obtained through one time rapid machining by the method. Asymmetric spur gear with better transmission characteristic can be obtained via involute modification.


1982 ◽  
Vol 104 (4) ◽  
pp. 759-764 ◽  
Author(s):  
J. J. Coy ◽  
C. Hu-Chih Chao

A method of selecting grid size for the finite element analysis of gear tooth deflection is presented. The method is based on a finite element study of two cylinders in line contact, where the criterion for establishing element size was that there be agreement with the classic Hertzian solution for deflection. Many previous finite element studies of gear tooth deflection have not included the full effect of the Hertzian deflection. The present results are applied to calculate deflection for the gear specimen used in the NASA spur gear test rig. Comparisons are made between the present results and the results of two other methods of calculation. The results have application in design of gear tooth profile modifications to reduce noise and dynamic loads.


Sign in / Sign up

Export Citation Format

Share Document