2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Fayao Xu ◽  
Huiying Wu ◽  
Zhenyu Liu

In this paper, the flow patterns during water flow boiling instability in pin-fin microchannels were experimentally studied. Three types of pin-fin arrays (in-line/circular pin-fins, staggered/circular pin-fins, and staggered/square pin-fins) were used in the study. The flow instability started to occur as the outlet water reached the saturation temperature. Before the unstable boiling, a wider range of stable boiling existed in the pin-fin microchannels compared to that in the plain microchannels. Two flow instability modes for the temperature and pressure oscillations, which were long-period/large-amplitude mode and short-period/small-amplitude mode, were identified. The temperature variation during the oscillation period of the long-period/large-amplitude mode can be divided into two stages: increasing stage and decreasing stage. In the increasing stage, bubbly flow, vapor-slug flow, stratified flow, and wispy flow occurred sequentially with time for the in-line pin-fin microchannels; liquid single-phase flow, aforementioned four kinds of two-phase flow patterns, and vapor single-phase flow occurred sequentially with time for the staggered pin-fin microchannel. The flow pattern transitions in the decreasing stage were the inverse of those in the increasing stage for both in-line and staggered pin-fin microchannels. For the short-period/small-amplitude oscillation mode, only the wispy flow occurred. With the increase of heat flux, the wispy flow and the vapor single-phase flow occupied more and more time ratio during an oscillation period in the in-line and staggered pin-fin microchannels.


2001 ◽  
Vol 73 (6) ◽  
pp. 685-685 ◽  
Author(s):  
Hannsjörg Freund ◽  
Elias Klemm ◽  
Gerhard Emig ◽  
Thomas Zeiser ◽  
Gunther Brenner ◽  
...  

Author(s):  
J. Kulman ◽  
D. Gray ◽  
S. Sivanagere ◽  
S. Guffey

Heat transfer and flow characteristics have been determined for a single-phase rectangular loop thermosiphon. The plane of the loop was vertical, and tests were performed with in-plane tilt angles ranging from 3.6° CW to 4.2° CCW. Velocity profiles were measured in one vertical leg of the loop using both a single-component Laser Doppler Velocimeter (LDV), and a commercial Particle Image Velocimeter (PIV) system. The LDV data and PIV data were found to be in good agreement. The measured average velocities were approximately 2–2.5 cm/s at an average heating rate of 70 W, and were independent of tilt angle. Significant RMS fluctuations of 10–20% of the mean velocity were observed in the test section, in spite of the laminar or transitional Reynolds numbers (order of 700, based on the hydraulic diameter). These fluctuations have been attributed to vortex shedding from the upstream temperature probes and mitre bends, rather than to fully developed turbulence. Animations of the PIV data clearly show these large scale unsteady flow patterns. Multiple steady state flow patterns were not observed.


Author(s):  
Mark White ◽  
Greg Epelbaum

Covanta is using a multifaceted approach to problem solving in Waste-to-Energy systems which combines several types of computer modeling with physical cold flow models, field testing, and engineering experience. This problem-solving approach is applied to boiler corrosion, gas and particulate flow patterns, reagent injection, and APC system issues. Our goals are to bring the most appropriate tools to each issue and incorporate results back into the engineering approach in order to continually improve our technical capabilities. Several types of computer modeling are used. A commercially available energy balance program is used for steam cycle evaluations and boiler energy balance and heat transfer calculations. Computational Fluid Dynamics (CFD) models are developed to investigate temperature and flow patterns where local conditions must be understood in detail. We have made extensive use of cold flow models to improve performance of APC systems, and to evaluate overfire air mixing in furnaces, and flow distribution through tube banks in boilers. Field testing is used to investigate temperature fluctuations and distributions, flow stratification, corrosion rates, and to validate modeling or analytical results. Each of these approaches has its own set of advantages, disadvantages, and limitations, and must always be combined with a healthy dose of operating and engineering experience. Analytical work is done by, or in close cooperation with, our operations and engineering staff with many years of experience operating, designing, and modifying boilers, APC systems, and related equipment. This integrated approach has yielded significant improvements in many cases and is being used in increasingly complex applications.


1993 ◽  
Vol 115 (1) ◽  
pp. 173-177 ◽  
Author(s):  
G. S. H. Lock ◽  
D. Ladoon

This paper describes the results of single-phase experiments on a right-angled, or elbow, thermosyphon with the cooled section upright and the heated section horizontal. For diameter-based Rayleigh numbers less than 107.6, the data indicate the existence of two flow regimes: fully mixed and impeded. A flow model is used to suggest how the cooled section and heated section flow patterns are coupled together. This model satisfactorily explains the effect of geometry on heat transfer, as revealed in the usual plots of Nusselt number versus Rayleigh number. Thermal performance was found to be comparable to that of the linear thermosyphon.


Author(s):  
Vladimirs Cimanis ◽  
Vladimirs Hramcovs ◽  
Ivars Rankis

The Single-phase AC Regulator on Base of Bidirectional IGBT SwitchesIn the work one of the methods for regulation of sinus shape AC voltage for middle-power loads with activeinductive character is observed. Such a regulator keeping output voltage of sinus shape must be fast-reacting and work in closed-loop system. It's shown, that for providing such features Buck and Boost pulse regulators can be applied. The only difference from DC pulse converters is that electronic switches in the system must be with bidirectional conductivity. For this reason an IGBT transistors can be applied with implemented in structure reverse diodes and if such two transistors are connected in series and with contrary conductivity then at activating both one of them will be in on-state. Realization of AC regulators with such switches is described in the work. Results of computer modeling also are given. Output voltage ripples are investigated on subject of their range and efficiency of filtering equipment on LC base. Such regulators can be applied for instance in electrical transport self supply systems.


2017 ◽  
Vol 32 (2) ◽  
pp. 233-261 ◽  
Author(s):  
Annemie Bogaerts ◽  
Maryam Aghaei

We illustrate how modeling can give better insight in ICP-MS, by showing calculated plasma characteristics, gas flow patterns and sample behavior.


Sign in / Sign up

Export Citation Format

Share Document