Recommended Crew Systems Functionality for a Mars Ascent Vehicle as a Function of Flight Duration

ASCEND 2020 ◽  
2020 ◽  
Author(s):  
Robert L. Howard
Keyword(s):  
2020 ◽  
Vol 68 (3) ◽  
pp. 123-127
Author(s):  
Shigeru Sunada ◽  
Ryoji Katayanagi ◽  
Kohei Yamaguchi
Keyword(s):  

2021 ◽  
Vol 11 (11) ◽  
pp. 4856
Author(s):  
Hae-Sol Lee ◽  
Myeong-Hwan Hwang ◽  
Hyun-Rok Cha

As unmanned aerial vehicles expand their utilization and coverage, research is in progress to develop low-weight and high-performance motors to efficiently carry out various missions. An electromagnetic field interior permanent magnet (IPM) motor was designed and analyzed in this study that improved the flight performance and flight duration of an unmanned aerial vehicle (UAV). The output power and efficiency of a conventional commercial UAV motor were improved by designing an IPM motor of the same size, providing high power output and high-speed operation by securing high power density, wide speed range, and mechanical stiffness. The cooling performance and efficiency of the drive motor were improved without requiring a separate power source for cooling by introducing the helical-grooved self-cooling case, which has a low heat generation structure. Furthermore, the motor is oil-cooled through rotating power without a separate power source, reducing the weight of the UAV. The heat dissipation characteristics were verified by fabricating a prototype and taking actual measurements to verify the validity of the heat dissipation characteristics. The results of this study are expected to improve the flight duration and performance of UAVs and contribute to the efficiency of the design of a UAV drive motor.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 394
Author(s):  
Carlos A. Antolinez ◽  
Tobias Moyneur ◽  
Xavier Martini ◽  
Monique J. Rivera

Diaphorina citri Kuwayama (Hemiptera: Liviidae), commonly known as Asian citrus psyllid (ACP), is an invasive insect pest and the vector of the bacterium causing Huanglongbing (HLB), a lethal disease of citrus. In the United States, ACP has been established in all citrus-producing zones, all of which have different environmental conditions. The spread of ACP and, more importantly, HLB, has progressed differently depending on the state, with more rapid spread in Florida and Texas than in California. Climatic variations between the regions are likely a strong factor in the difference in the rate of spread. Despite this, it is unknown how the flight capacity of D. citri is influenced by high temperatures (>30 °C) and subsequently, low humidity experienced in California but not in Texas or Florida. In this study, by using a custom-made, temperature-controlled flight mill arena, we assessed the effect of high temperatures on the flight capacity and flight propensity of D. citri under low (20–40%) and high (76–90%) relative humidity conditions. We found that temperature and humidity influence the propensity to engage in short or long-distance flight events. Psyllids exposed to temperatures above 43 °C only performed short flights (˂60 s), and a high relative humidity significantly decrease the proportion of long flights (≥60 s) at 26 and 40 °C. The flight capacity for insects who engaged in short and long flights was significantly affected by temperature but not by humidity. For long flyers, temperature (in the 26–43 °C range) was negatively correlated with distance flown and flight duration. The most favorable temperature for long dispersion was 26 °C, with suboptimal temperatures in the range of 32–37 °C and the least favorable temperatures at 40 and 43 °C. In conclusion, D. citri is able to fly in a broad range of temperatures and efficiently fly in high and low humidity. However, temperatures above 40 °C, similar to those experienced in semi-arid environments like Southern California or Arizona, are detrimental for its flight capacity.


2015 ◽  
Vol 220-221 ◽  
pp. 928-933 ◽  
Author(s):  
Kristjan Tiimus ◽  
Mikk Murumäe ◽  
Eero Väljaots ◽  
Mart Tamre

Unmanned aerial vehicles (UAVs) are used predominately for military applications, despite a growing number of emerging civilian tasks. One of the key tasks for increasing the advantages over a manned aircraft are to extend the flight duration of the UAV. Long endurance flights demand an engine that adapts to variable weather and atmospheric conditions as well as to changes in altitude. Varying demand of the UAV for power is compared to determine the needs for our mid-class test platform. The paper presents a solution to a high-efficiency engine and suggests a test layout for assessing reliability and optimal performance.


2017 ◽  
Vol 53 (5) ◽  
pp. 4965-4972 ◽  
Author(s):  
Robert A. Sowah ◽  
Moses Amoasi Acquah ◽  
Abdul R. Ofoli ◽  
Godfrey A. Mills ◽  
Koudjo M. Koumadi

2021 ◽  
Vol 30 (1) ◽  
pp. 103-109
Author(s):  
Natan A. Eismont ◽  
Vladislav A. Zubko ◽  
Andrey A. Belyaev ◽  
Ludmila V. Zasova ◽  
Dmitriy A. Gorinov ◽  
...  

Abstract This study discusses the usage of Venus gravity assist in order to choose and reaching any point on Venusian surface. The launch of a spacecraft to Venus during the launch windows of 2029 to 2031 is considered for this purpose. The constraints for the method are the re-entry angle and the maximum possible overload. The primary basis of the proposed strategy is to use the gravitational field of Venus to transfer the spacecraft to an orbit resonant to the Venusian one – with the aim of expanding accessible landing areas. Results of the current research show that this strategy provides an essential increase in accessible landing areas and, moreover, may provide an access to any point on the surface of Venus with a small increase in ∆V required for launch from the Earth and in the flight duration. The comparison with the landing without using gravity assist near planet is also given.


2019 ◽  
Vol 26 (2) ◽  
pp. 85-92
Author(s):  
Michał Kuźniar ◽  
Marek Orkisz

Abstract The paper describes the selection of a distributed propulsion for the AOS H2 motor glider (selection of engines, their number, and propellers) and determination of its performance. This analysis is related to the research conducted on environment friendly and hybrid propulsions in various research centres. The main aim of the analyses conducted is to increase the performance of vehicles powered by electric motors. The batteries have a low density of energy, i.e. the ratio of mass to cumulated energy. Instead of a battery set, it is possible to apply a hybrid-electric system, where the combustion engine works as a generator or an electric-hydrogen generator, where the hydrogen cell supports a small set of batteries. One of such flying vehicles, fitting in this trend, is the AOS H2 motor glider built at the Rzeszow University of Technology in cooperation with other universities. It is a hybrid aircraft, equipped with a hydrogen cell, which together with a set of batteries is a source of electricity for the Emrax 268 electric motor. To increase the vehicle's performance (the range and flight duration), it is possible to use a distributed propulsion. This type of propulsion consists in placing many electric motors along the wingspan of the aircraft. Appropriate design of such a system (propeller diameters, engine power, number of engines) can improve the aerodynamic and performance parameters of the airframe. An analysis of the performance for the selected flight trajectory for this propulsion variant was conducted and compared to the performance of the AOS H2 motor glider equipped with traditional propulsion. The consumption of hydrogen was also determined for both systems. The results obtained were presented in the diagrams and discussed in the conclusions.


Author(s):  
Andrey K. Iordanishvili

BACKGROUND: Preservation and strengthening of the health of civil aviation flight personnel is an extremely urgent problem and is associated with ensuring flight safety. AIM: This study aimed to determine the structure and analyze the organs and tissues of the masticatory apparatus among civil aviation flight personnel. MATERIALS AND METHODS: To determine the incidence and intensity of main dental diseases and the morbidity structure of organs and tissues of the masticatory apparatus in civil aviation pilots, an in-depth examination was carried out in 120 men aged 2545 years (study group 1) working on various modern passenger and transport aircrafts. The duration of flight operations ranged from 2 to 17 years, with a total flight duration of 140 to 5580 h. The comparison group consisted of 146 men (aged 2545 years) of non-flying specialties (study group 2). The generally accepted methods for assessing the prevalence and intensity of the course of major dental diseases were used. RESULTS: The incidence and intensity of dental disorders, periodontal disease, temporomandibular joint disorders, and parafunctions of the masticatory muscles were defined. The incidence and intensity of major dental diseases among civil aviation flight personnel were clearly directly proportional to their flight time (r=0.547) and duration of work in civil aviation (r=0.482) but to a lesser extent to their age (r=0.416). CONCLUSIONS: Non-carious lesions of the teeth, inflammatory and dystrophic diseases of the periodontal and oral mucosa, painful dysfunction of the temporomandibular joint, and bruxism are more common among civil aviation flight personnel than among non-flying personnel, which is due to the unfavorable effect of air flight factors on organs and tissues of the mastication apparatus and the body of the pilots as a whole.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jamie M. Cornelius ◽  
Thomas P. Hahn ◽  
Ashley R. Robart ◽  
Ben J. Vernasco ◽  
Dorothy L. Zahor ◽  
...  

Physiological preparations for migration generally reflect migratory strategy. Migrant birds fuel long-distance flight primarily with lipids, but carrying excess fuel is costly; thus, the amount of fat deposited prior to departure often reflects the anticipated flight duration or distance between refueling bouts. Seasonal pre-migratory deposition of fat is well documented in regular seasonal migrants, but is less described for more facultative species. We analyze fat deposits of free-living birds across several taxa of facultative migrants in the songbird subfamily Carduelinae, including house finches (Haemorhous mexicanus), American goldfinches (Spinus tristis), pine siskins (Spinus pinus) and four different North American ecotypes of red crossbills (Loxia curvirostra), to evaluate seasonal fat deposition during facultative migratory periods. Our data suggest that the extent of seasonal fat deposits corresponds with migratory tendency in these facultative taxa. Specifically, nomadic red crossbills with a seasonally predictable annual movement demonstrated relatively large seasonal fat deposits coincident with the migratory periods. In contrast, pine siskins, thought to be more variable in timing and initiation of nomadic movements, had smaller peaks in fat deposits during the migratory season, and the partial migrant American goldfinch and the resident house finch showed no peaks coincident with migratory periods. Within the red crossbills, those ecotypes that are closely associated with pine habitats showed larger peaks in fat deposits coincident with autumn migratory periods and had higher wing loading, whereas those ecotypes associated with spruces, Douglas-fir and hemlocks showed larger peaks coincident with spring migratory periods and lower wing loading. We conclude that population averages of fat deposits do reflect facultative migration strategies in these species, as well as the winter thermogenic challenges at the study locations. A difference in seasonal fattening and wing loading among red crossbill ecotypes is consistent with the possibility that they differ in their migratory biology, and we discuss these differences in light of crossbill reproductive schedules and phenologies of different conifer species.


2001 ◽  
Vol 54 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Karen von Hünerbein ◽  
Wolfgang Wiltschko ◽  
Eckhard Rüter

This and the following paper were first presented at the RIN01 Conference held in Oxford under the auspices of the Animal Navigation Special Interest Group, April 2001.Flight paths of homing pigeons were measured with a newly developed recorder based on GPS. The device consists of a GPS receiver board, a logging facility, an antenna, a power supply, a DC-DC converter and a casing. It has a weight of 33 grams and works reliably with a sampling rate of 1 Hz for an operating time of about three hours, providing time-indexed data on geographic positions, ground speed and altitude. The devices are fixed to the birds with a harness, and the data are downloaded when the bird is re-captured. The measured flight paths show many details : for example, initial loops flown immediately after release and large detours flown by some pigeons. Three examples of flight paths are presented from a release site 17·3 km northeast of the home loft in Frankfurt. Mean speed in flight, duration of breaks and total length of the flight path were calculated. The pigeons chose different routes and have different individual tendencies to fly loops over the village close to the release site.


Sign in / Sign up

Export Citation Format

Share Document