Understanding the Effect of Rock Compressibility on CO2 Storage Capacity Estimation in a Depleted Carbonate Gas Reservoir

2021 ◽  
Author(s):  
Prasanna Chidambaram ◽  
Raj Deo Tewari ◽  
Siti Syareena Mohd Ali ◽  
Chee Phuat Tan

Abstract Avoiding or reducing greenhouse gases emission in the atmosphere requires extensive application of technologies and one of them is underground CO2 sequestration. Capture and storage of CO2 in depleted hydrocarbon reservoirs can reduce greenhouse gases released into the atmosphere effectively. Hydrocarbon reservoirs are considered one of the ideal geologic storage sites as they have held hydrocarbons over millions of years. Their architecture and properties are well understood due to exploration and production activities from these reservoirs. Storage projects require a large depleted hydrocarbon reservoir with good reservoir properties and are affected by several factors including voidage created by hydrocarbon production, pressure, architecture, formation permeability, aquifer influx, subsidence and compaction, and rock compressibility to name a few. Thus, realistic estimation of the storage capacity of the reservoir is a key step in the evaluation of CO2 storage plan. A good history matched simulation model incorporating the geomechanical parameters is essential to estimate storage capacity of the reservoir. Three major depleted gas reservoirs in Central Luconia field, located in offshore Sarawak, are being evaluated for future CO2 storage. Reservoir simulation is used as a tool to estimate future CO2 storage capacity of these reservoirs. Reliability of forecast from a reservoir simulation model is dependent on the quality of history match achieved. Hence it is believed that CO2 storage capacity estimates obtained from a good history matched simulation model must be reliable. However, during history matching exercise in these reservoirs, it was observed that an acceptable history match could be achieved with a range of rock compressibility values and aquifer influxes. Generally, a constant value of rock compressibility is used in conventional simulation. For example, in order to obtain an acceptable history match, with a lower compressibility, a larger aquifer influx is needed and vice versa. Interestingly, a forecast using these history match cases yield different CO2 storage capacities. A closer evaluation shows that aquifer influx has a strong impact on future CO2 storage capacity. An acceptable quality of history match can be obtained for a range of rock compressibility values when aquifer influx is adjusted along with it. Sensitivity analysis shows that future CO2 storage capacity in depleted hydrocarbon reservoir is sensitive to rock compressibility used in the simulation model. A detailed sensitivity analysis along with multiple history match scenarios is necessary to understand the range in future storage capacity when evaluating CO2 storage plan.

2021 ◽  
Author(s):  
Georgios Nikolakopoulos-Skelly ◽  
Marie Ann Giddins ◽  
Rong Xu ◽  
Chioma Ezeogu ◽  
Matthew Jackson

Abstract In this paper, we describe an approach to designing monitoring schemes for carbon dioxide sequestration in saline aquifers. Changes in key parameters are investigated over timescales of up to a thousand years. The study addresses movement of the CO2 plume, possible locations for observation wells and the period for which a storage location should be monitored. For the initial sensitivity analysis, we use a simple homogeneous reservoir simulation model to understand how reservoir, operational and model parameters affect the amount of mobile CO2 remaining at different times over the storage period. The parameters with the greatest impact are taken forward to uncertainty studies, which are conducted on two reservoir models with more realistic geological characteristics: one with lateral extensive baffles and one with sand channels. For these cases, we investigate the movement of the CO2 plume and its arrival at possible locations for an observation well. Results from the sensitivity analysis indicate that the most influential parameters are horizontal permeability, dipping angle, critical gas saturation, salinity, the period of injection and the capillary pressure curve. The results from the uncertainty studies indicate that for the two heterogeneous models, a reasonable monitoring period is in the range of 60 to 150 years and that the movement of the plume probably stops after approximately 100 years. The arrival time of CO2 at the observation well can be predicted with greater confidence when the well is in close proximity to the injector and in the direction in which CO2 will preferably move. A correlation analysis on the uncertain parameters shows that the main contributor affecting the amount of mobile CO2 is critical gas saturation, followed by dipping angle and the period of injection. While previous studies focus on how different parameters affect immobilization of CO2, this study aims to develop a methodology to plan long-term monitoring of mobile CO2. Prediction of the expected plume movement can help to determine suitable observation well locations and reasonable timescales for the monitoring process.


2015 ◽  
Vol 63 (4) ◽  
pp. 287-294 ◽  
Author(s):  
Daniel Marton ◽  
Miloš Starý ◽  
Pavel Menšík

Abstract The paper contains a sensitivity analysis of the influence of uncertainties in input hydrological, morphological and operating data required for a proposal for active reservoir conservation storage capacity and its achieved values. By introducing uncertainties into the considered inputs of the water management analysis of a reservoir, the subsequent analysed reservoir storage capacity is also affected with uncertainties. The values of water outflows from the reservoir and the hydrological reliabilities are affected with uncertainties as well. A simulation model of reservoir behaviour has been compiled with this kind of calculation as stated below. The model allows evaluation of the solution results, taking uncertainties into consideration, in contributing to a reduction in the occurrence of failure or lack of water during reservoir operation in low-water and dry periods.


2017 ◽  
Vol 114 ◽  
pp. 4564-4570 ◽  
Author(s):  
S. Agada ◽  
C. Kolster ◽  
G. Williams ◽  
H. Vosper ◽  
N. MacDowell ◽  
...  

2019 ◽  
Vol 2 (5) ◽  
Author(s):  
Mengda Zhang ◽  
Chenjing Zhou ◽  
Tian-tian Zhang ◽  
Yan Han

Selecting check index quantitatively is the core of the calibration of micro traffic simulation parameters at signal intersection. Five indexes in the node (intersection) module of VISSIM were selected as the check index set. Twelve simulation parameters in the core module were selected as the simulation parameters set. Optimal process of parameter calibration was proposed and model of the intersection of Huangcun west street and Xinghua street in Beijing was built in VISSIM to verify it. The sensitivity analysis between each check index and simulation parameter in their own set was conducted respectively. Sensitive parameter sets of different check indices were obtained and compared. The results show that different indexes have different size of set, and average vehicle delay's is maximum, so it's necessary to select index quantitatively. The results can provide references for scientific selection of the check indexes and improve the study efficiency of parameter calibration.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 139
Author(s):  
Oluranti Agboola ◽  
Ojo Sunday Isaac Fayomi ◽  
Ayoola Ayodeji ◽  
Augustine Omoniyi Ayeni ◽  
Edith E. Alagbe ◽  
...  

Globally, environmental challenges have been recognised as a matter of concern. Among these challenges are the reduced availability and quality of drinking water, and greenhouse gases that give rise to change in climate by entrapping heat, which result in respirational illness from smog and air pollution. Globally, the rate of demand for the use of freshwater has outgrown the rate of population increase; as the rapid growth in town and cities place a huge pressure on neighbouring water resources. Besides, the rapid growth in anthropogenic activities, such as the generation of energy and its conveyance, release carbon dioxide and other greenhouse gases, warming the planet. Polymer nanocomposite has played a significant role in finding solutions to current environmental problems. It has found interest due to its high potential for the reduction of gas emission, and elimination of pollutants, heavy metals, dyes, and oil in wastewater. The revolution of integrating developed novel nanomaterials such as nanoparticles, carbon nanotubes, nanofibers and activated carbon, in polymers, have instigated revitalizing and favourable inventive nanotechnologies for the treatment of wastewater and gas separation. This review discusses the effective employment of polymer nanocomposites for environmental utilizations. Polymer nanocomposite membranes for wastewater treatment and gas separation were reviewed together with their mechanisms. The use of polymer nanocomposites as an adsorbent for toxic metals ions removal and an adsorbent for dye removal were also discussed, together with the mechanism of the adsorption process. Patents in the utilization of innovative polymeric nanocomposite membranes for environmental utilizations were discussed.


2021 ◽  
Vol 13 (11) ◽  
pp. 5795
Author(s):  
Sławomir Biruk ◽  
Łukasz Rzepecki

Reducing the duration of construction works requires additional organizational measures, such as selecting construction methods that assure a shorter realization time, engaging additional resources, working overtime, or allowing construction works to be performed simultaneously in the same working units. The simultaneous work of crews may affect the quality of works and the efficiency of construction processes. This article presents a simulation model aimed at assessing the impact of the overlap period on the extension of the working time of the crews and the reduction of a repetitive project’s duration in random conditions. The purpose of simulation studies is to provide construction managers with guidelines when deciding on the dates of starting the sequential technological process lines realized by specialized working crews, for sustainable scheduling and organization of construction projects.


Sign in / Sign up

Export Citation Format

Share Document