scholarly journals Phenolic Compounds from Centaurea horrida L Growing in Lebanon

Author(s):  
Rima Boukhary ◽  
Maha Aboul-ElA ◽  
Othman Al-Hanbali ◽  
Abdalla El-Lakany

Centaurea horrida has been used in folk medicine for many purposes as diuretic, antiinflammatory, hypotensive, antidiarrhetic, mild astringent, bitter tonic, stomachic, digestive, and emmenagogue and in cosmetics. An infusion of this plant is used to treat diabetes and digestive problems Also it is used as a wash for tired eyes and in conjunctivitis. C.horrida grown in Lebanon is widely used in the treatment of diarrhea, as antihypertensive and as hypoglycemic. Phytochemical investigation of the species grown in Lebanon led to the isolation and identification of five phenolic compounds isolated from methanol, ethyl acetate and butanol fractions of Centaurea extracts. Their structures were determined by NMR, MS, UV and IR methods. It is important to mention that the isolated flavonoids fisetin, hispidulin, quercetin, quercetin -3-D- galactoside and caffeic acid were isolated for the first time from Centaurea horrida. L growing in the Middle East.

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2521 ◽  
Author(s):  
Larissa Silva ◽  
Jovelina Alves ◽  
Emerson da Silva Siqueira ◽  
Manoel de Souza Neto ◽  
Lucas Abreu ◽  
...  

Genipa americana is a medicinal plant popularly known as “jenipapo”, which occurs in Brazil and belongs to the Rubiaceae family. It is a species widely distributed in the tropical Central and South America, especially in the Cerrado biome. Their leaves and fruits are used as food and popularly in folk medicine to treat anemias, as an antidiarrheal, and anti-syphilitic. Iridoids are the main secondary metabolites described from G. americana, but few studies have been conducted with their leaves. In this study, the aim was to chemical approach for identify the main compounds present at the extract of G. americana leaves. The powdered leaves were extracted by maceration with EtOH: water (70:30, v/v), following liquid-liquid partition with petroleum ether, chloroform, ethyl acetate and n-butanol. A total of 13 compounds were identified. In addition three flavonoids were isolated from the ethyl acetate fraction: quercetin-3-O-robinoside (GAF 1), kaempferol-3-O-robinoside (GAF 2) and isorhamnetin-3-O-robinoside (GAF 3) and, from n-butanol fraction more two flavonoids were isolated, kaempferol-3-O-robinoside-7-O-rhamnoside (robinin) (GAF 4) and isorhamnetin-3-O-robinoside-7-rhamnoside (GAF 5). Chemical structures of these five flavonoids were elucidated using spectroscopic methods (MS, 1H and 13C-NMR 1D and 2D). These flavonoids glycosides were described for the first time in G. americana.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1694
Author(s):  
Kamel Arraki ◽  
Perle Totoson ◽  
Alain Decendit ◽  
Andy Zedet ◽  
Justine Maroilley ◽  
...  

Polyphenolic enriched extracts from two species of Cyperus, Cyperus glomeratus and Cyperus thunbergii, possess mammalian arginase inhibitory capacities, with the percentage inhibition ranging from 80% to 95% at 100 µg/mL and 40% to 64% at 10 µg/mL. Phytochemical investigation of these species led to the isolation and identification of two new natural stilbene oligomers named thunbergin A-B (1–2), together with three other stilbenes, trans-resveratrol (3), trans-scirpusin A (4), trans-cyperusphenol A (6), and two flavonoids, aureusidin (5) and luteolin (7), which were isolated for the first time from C.thunbergii and C. glomeratus. Structures were established on the basis of the spectroscopic data from MS and NMR experiments. The arginase inhibitory activity of compounds 1–7 was evaluated through an in vitro arginase inhibitory assay using purified liver bovine arginase. As a result, five compounds (1, 4–7) showed significant inhibition of arginase, with IC50 values between 17.6 and 60.6 µM, in the range of those of the natural arginase inhibitor piceatannol (12.6 µM). In addition, methanolic extract from Cyperus thunbergii exhibited an endothelium and NO-dependent vasorelaxant effect on thoracic aortic rings from rats and improved endothelial dysfunction in an adjuvant-induced arthritis rat model.


Author(s):  
HAITHAM ALI IBRAHIM ◽  
FATEHIA SAYED ELSHARAWY ◽  
MAHMMOUD ELHASSAB ◽  
SAMAH SHABANA ◽  
EMAN GABER HAGGAG

Objective: phytochemical investigation of the ethyl acetate fraction (EAF) of 80% aqueous methanol extract (AME) of Dypsis leptocheilos leaves, in addition to evaluation of the antioxidant, cytotoxic and antimicrobial activities of the AME and EAF. Docking was used to predict and understand cytotoxicity of the isolated compounds. Methods: The ethyl acetate fraction (EAF) of Dypsis leptocheilos leaves was subjected to different chromatographic separation techniques. Structures of the isolated compounds were established by different spectroscopic techniques (1H/13C NMR). Antioxidant activity was evaluated by DPPH assay, while cytotoxicity was evaluated by MTT cell viability assay. Antimicrobial activity was evaluated by agar diffusion method. The docking study was conducted using Auto Dock Vina; the estrogen receptor (PDB 5t92) was used as a receptor for the docking. Results: Chromatographic separation techniques were led to the isolation of five phenolic compounds; these compounds were identified to be apigenin 8-C-β-D-glucopyranoside (Vitexin) (1), apigenin 6-C-β-D-glucopyranoside (Isovitexin) (2), luteolin 7-O-β-D-glucopyranoside (3), luteolin 8-C-β-D-glucopyranoside (Orientin) (4), luteolin 6-C-β-D-glucopyranoside (Isoorientin) (5). They were isolated and identified for the first time from this plant species. The AME and EAF showed moderate activity against Gram positive and Gram negatvie bacteria, while both of them showed similar and powerful antioxidant activity with SC50 = 12.8±0.56 µg/ml and SC50 = 17±0.77 µg/ml respectively, compared to ascorbic (reference drug) SC50 = 14.2±0.35 µg/ml. The EAF showed higher cytotoxic activity on the MCF-7 cells (human breast cancer cell line), with IC50 = 12.3 ± 1.82 µg/ml, compared to Vinblastine Sulfate (reference drug). All isolated compounds showed good binding affinity to the estrogen receptors existed in the MCF-7 cell. Conclusion: Five phenolic compounds were isolated for the first time from the EAF of Dypsis leptocheilos leaves. The AME and EAF extracts showed variable antioxidant, antimicrobial and cytotoxic activities.


2019 ◽  
Vol 57 (2) ◽  
pp. 162
Author(s):  
Quan Minh Pham ◽  
Hoai Van Thi Tran ◽  
Lam Tien Do ◽  
Phuong Lan Doan ◽  
Inh Thi Cam ◽  
...  

Urena lobata L. is used in Vietnamese traditional medicine for the treatment of several diseases. Tree roots are used to treat rheumatism, dysentery, poor digestion, flu, tonsils, malaria, asthma, goiter. Flowers are used to treat chickenpox, fever, and mental disorders. Branches, leaves or whole trees used to treat injuries bruises, rheumatism, mastitis, bites. Phytochemical investigation of the n-hexan and ethyl acetate extract of Urena lobata L. led to the isolation of β-sitosterol (1), β-sitosterol-3-O-β-D-glucopyranoside (2), a-acetylamino-phenylpropyl a-benzoylamino-phenylpropanoate (3), quercetin (4), and trans-tiliroside (5). Their chemical structures were determined by spectroscopic methods including MS, 1D, 2D NMR and comparing with those reported in previous papers. Two compounds 3, 5 were isolated for the first time from Urena lobata plant.


Separations ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 132
Author(s):  
Hong Yang ◽  
Li-Bo Wang ◽  
Ya-Ping Guo ◽  
Ya-Li Wang ◽  
Xiao-Xiang Chen ◽  
...  

The immature epicarps of Juglans mandshurica and Juglans regia have been used as folk medicine for the treatment of cancer in China. Other parts of the J.mandshurica plant, including leaves, branches, barks, and stems, have reported antitumor activities. We previously found that various diarylheptanoids and phenolic compounds isolated from J. mandshurica epicarps show significant antitumor activities. However, there are no reports of quantitative analysis of diarylheptanoids and phenolic compounds of J. mandshurica. In this study, a validated quantitative method, based on ultraperformance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry, was employed to determine the contents of eight diarylheptanoids and seven phenolic compounds in the epicarps of J. mandshurica during different growth periods, in different parts of the plant, and in the epicarps of two Juglans species. The most successful J. mandshurica epicarp harvesting time fell between Day 12 and Day 27. The leaves of J. mandshurica showed potential for medical use as they had the highest content of the 15 compounds (3.399 ± 0.013 mg/g). We showed for the first time that the total content of diarylheptanoids in J. mandshurica is higher than that in J. regia, though, conversely, J. regia has higher contents of phenolic compounds. The method developed in this study is practical and simple and can be applied for quantitative analysis for evaluating the intrinsic quality of J. mandshurica.


2018 ◽  
Author(s):  
◽  
Blessing Nemadziva

The rise in antioxidant demand for industrial applications has necessitated the need to investigate new methods for antioxidant production. Conventionally, antioxidants have been used in the food industry. However, newer applications in industries such as pharmaceuticals, cosmetics, medicine, nano-bioscience, as well as in chemical industries, have contributed to the increase in antioxidant demand. The market for antioxidants has been forecasted to increase by 6.42% compound annual growth rate (CAGR) between 2015 and 2022. Therefore, there is now a need to develop new processes for antioxidant synthesis to meet this rising demand. Biocatalysis has gained notable attention as a viable approach for antioxidant synthesis. Laccases are the preferred enzymes since their reaction mechanism involves the use of molecular oxygen to oxidise phenolic compounds to corresponding radicals, with water as the only by-product. Most laccase antioxidant synthesis research has employed fungal and plant laccases. However, bacterial laccases may be promising biocatalysts, considering the advances in molecular technology which make expression in bacterial hosts easier. This study focused on the biotransformation of natural phenolic compounds using small laccase (SLAC), a two-domain bacterial laccase native to Streptomyces coelicolor. Because of the low redox potential of the enzyme, a preliminary substrate screening process was conducted to identify phenolics oxidisable by the SLAC. Caffeic acid, 2,6-dimethoxyphenol, catechol, gallic acid, guaiacol, ferulic acid, and pyrogallol were identified as SLAC substrates and further coupling reaction studies were conducted using caffeic acid and gallic acid. Coupling reactions were carried out either in biphasic systems consisting of water-immiscible organic solvents and a buffer system or monophasic systems consisting of miscible organic solvents that form a homogenous phase with the buffer system. Coupling products were monitored using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC), purified using preparative TLC and column chromatography, and characterised by liquid chromatography-mass spectrometry (LCMS) and nuclear magnetic resonance spectroscopy (NMR). Antioxidant capacity of the oxidation products were investigated by using the 2,2’-diphenyl-1- picrylhydrazyl (DPPH) and Trolox equivalence antioxidant capacity (TEAC) assays. Two oxidation products (one from caffeic acid and another from gallic acid) were successfully produced, purified and characterised. The oxidation product obtained from the SLAC-catalysed oxidation of caffeic acid was identified as a β-β dimer using LC-MS and NMR. When the reaction was carried out at a large-scale, a 32.8% yield of the dimer was achieved. Results showed that optimum yield of the dimer was achieved when the reaction was carried out for 6 h in a biphasic system consisting of 80% ethyl acetate and sodium acetate buffer pH 7.5. The dimer demonstrated superior antioxidant capacity, showing a 1.5- fold increase in DPPH radical scavenging capacity and a 1.8-fold improvement in TEAC. The dimer exhibited several positive physicochemical attributes, including improved solubility properties in aqueous media and remarkable stability in acidic pH (pH 2.2 and pH 5.5). One oxidation product from the SLAC-catalysed oxidation of gallic acid was successfully produced, purified and partially characterised. Optimum yield of gallic acid oxidation product was achieved when the reaction was conducted in a biphasic system consisting of 80% ethyl acetate and Tris-HCl buffer pH 8.0, using 0.5 U SLAC and a reaction time of 4 h. However, the oxidation product showed a lower antioxidant capacity than the substrate, as demonstrated by standard antioxidant assays (DPPH and TEAC). In conclusion, two antioxidant products were successfully produced, purified and characterised. Furthermore, selected physicochemical and antioxidant activities were determined. Overall, this study has highlighted the potential of the small laccase as a catalyst for the synthesis of antioxidants.


2018 ◽  
Vol 13 (4) ◽  
pp. 1934578X1801300
Author(s):  
Klaudia Michalska ◽  
Katarzyna Pieron ◽  
Anna Stojakowska

The phytochemical investigation on roots of Leontodon hispidus L. subsp. hispidus, led to the isolation of nine sesquiterpene lactones including two eudesmanolides of santamarine type and three lactucin-like guaianolides together with four known phenolic compounds. The eudesmanolides – santamarine and 11 β,13-dihydrosantamarine, guaianolides – matricarin, deacetylmatricarin and deacetylmatricarin 8- O- β-glucopyranoside, and phenolics – syringaldehyde, 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone, syringin and dihydroconiferin were found for the first time in Leontodon.


2016 ◽  
Vol 11 (7) ◽  
pp. 1934578X1601100
Author(s):  
Sheng-Huang Chen ◽  
Juan Yu ◽  
Qin-Wen Li ◽  
Jian-Ping Zhao ◽  
David E. Wedge ◽  
...  

Phytochemical investigation of the roots and rhizomes of Pileostegia viburnoides var. glabrescens led to the isolation and identification of 31 compounds (1-31), 25 of which (1-2, 4-7, 9-12, 15-18, 21-31) were isolated from the Pileostegia genus for the first time. 7α-Hydroxyfriedelan-3-one-26-ol-29-oic acid (1) is a new friedelane-type triterpene. The structure of n-butyl-β-D-fructopyranoside (2) was determined by single-crystal X-ray diffraction. Compounds 4 and 12 displayed marginal cytotoxicity against the P388 murine leukemia cell line with IC50 values of 13.4 μM and 25.0 μM, respectively. Compound 23 exhibited marginal anti-inflammatory activity by the inhibition of lipopolysaccharide induced nitric oxide production in RAW 264.7 macrophage cells, with an IC50 value of 32.0 μM. Compounds 3, 8-10, 25, and 27 were phytotoxic to the dicot Lactuca sativa (lettuce) and/or the monocot Agrostis stolonifera (bentgrass).


2012 ◽  
Vol 7 (12) ◽  
pp. 1934578X1200701
Author(s):  
Shazia Yasmeen ◽  
Muhammad Aijaz Anwar ◽  
Sadia Ferheen ◽  
Nighat Afza ◽  
Abdul Malik ◽  
...  

Phytochemical investigation of the ethyl acetate soluble fraction of the methanol soluble extract of the roots of Daphne oleoides resulted in isolation and identification of two new isomeric biisoflavonoids characterized as 8,8′’-bi-6-hydroxyorobol (1) and 8,8′’-bi-6, 2′-dihydroxygenistein (2). The structures of these compounds were established by analysis of their 1D and 2D NMR and HRMS data.


Sign in / Sign up

Export Citation Format

Share Document