scholarly journals Volatiles and Lipoidal Composition: Antimicrobial Activity of Flowering Aerial Parts of Lavandula pubescens Decne

Author(s):  
Gouda B. ◽  
Mousa O. ◽  
Salama M. ◽  
Kassem H.

The hydro-distilled volatile oil of the flowering aerial parts of Lavandula pubescens Decne. was analyzed using gas chromatography-mass spectrometry (GC/MS). Twenty eight components were identified representing 87.39% of the total oil. Carvacrol (22.39 %), cis-β-Farnesene (13.25 %) and β-Bisabolene (12.9 %) were the major constituents. Lipoids were detected in the n-hexane extract. Unsaponifiable lipoids (USL) and fatty acids methyl esters (FAME) of the n-hexane extract were analyzed by GC/MS. The percentage of the total identified unsaponifiable matter was 83.51%, while that of fatty acids was 40.83%. 5-Hydroxy1,3,4-trimethoxy-7-methyl-6-propar-naphthalene was the major identified component in the unsaponifiable matter representing 36.64 %, followed by Hentriacontane (8.09 %). Octadecenoic acid was the major fatty acid identified representing 12.72 %.The antimicrobial potential of the methanol extract and its fractions (n-hexane, methylene chloride, ethyl acetate and n-butanol) as well as the hydrodistilled volatile oil were assessed. All the tested samples except the n-butanol fraction exhibited broad spectrum activity against the tested Gram-positive bacteria;Bacillus subtilis, Staphylococcus aureus and Streptococcus faecalisas well as Gram-negative bacteria; Escherichia coli, Pseudomonas aeruginosa and Neisseria gonorrhea. The n-butanol fraction showed antimicrobial activity against all tested Gram-negative and Gram-positive bacteria except Staphylococcus aureus. The growth of Candida albicans and Aspergillus flavus was not affected by any of the tested samples.

2004 ◽  
Vol 59 (9-10) ◽  
pp. 653-656 ◽  
Author(s):  
Ali Sonboli ◽  
Peyman Salehi ◽  
Morteza Yousefzadi

Abstract The composition and antimicrobial activity of the essential oil of Nepeta crispa Willd., an endemic species from Iran, was studied. The oil was obtained from the aerial parts of the plant and analyzed by GC and GC/MS. Twenty-three compounds, accounting for 99.8% of the total oil, were identified. The main constituents were 1,8-cineol (47.9%) and 4aα,7α,7aβ- nepetalactone (20.3%). The antimicrobial activity of essential oil of N. crispa was tested against seven gram-negative or gram-positive bacteria and four fungi. The results of the bioassays showed the interesting antimicrobial activity, in which the gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, were the most sensitive to the oil. Also, the oil exhibited a remarkable antifungal activity against all the tested fungi.


2009 ◽  
Vol 4 (1) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Branislava Lakušić ◽  
Violeta Slavkovska ◽  
Milica Pavlović ◽  
Marina Milenković ◽  
Jelena Antić Stanković ◽  
...  

The essential oils of the aerial parts and fruits of Chaerophyllum aureum L., collected from two mountains in Serbia, were analyzed by GC and GC/MS. Sabinene (18.5-31.6%), p-cymene (7.9-25.4%) and limonene (1.9-10.9%) were characterized as the main constituents. The oils were tested against six bacterial strains and one strain of yeast, Candida albicans. The highest antimicrobial activity was observed against the Gram-positive bacteria Staphylococcus aureus, S. epidermidis and Micrococcus luteus, while of the Gram-negative strains, Escherichia coli was the most sensitive.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2047 ◽  
Author(s):  
Izabela Przybyłek ◽  
Tomasz M. Karpiński

Researchers are continuing to discover all the properties of propolis due to its complex composition and associated broad spectrum of activities. This review aims to characterize the latest scientific reports in the field of antibacterial activity of this substance. The results of studies on the influence of propolis on more than 600 bacterial strains were analyzed. The greater activity of propolis against Gram-positive bacteria than Gram-negative was confirmed. Moreover, the antimicrobial activity of propolis from different regions of the world was compared. As a result, high activity of propolis from the Middle East was found in relation to both, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains. Simultaneously, the lowest activity was demonstrated for propolis samples from Germany, Ireland and Korea.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mashooq Ahmad Bhat ◽  
Mohamed A. Al-Omar ◽  
Ahmed M. Naglah ◽  
Abdul Arif Khan

A series of pyrazoles derived from the substituted enaminones were synthesized and were evaluated for antimicrobial activity. All the compounds were characterized by the spectral data and elemental analysis. The synthesized compounds were initially screened for their antimicrobial activity against ATCC 6538, NCTC 10400, NCTC 10418, and ATCC 27853. During initial screening, compounds (P1, P6, and P11) presented significant antimicrobial activity through disc diffusion assay. These compounds were further evaluated for antimicrobial activity at different time points against Gram-positive and Gram-negative bacteria and presented significant activity for 6 hours. The activity was found to be greater against Gram-positive bacteria. In contrast at 24 hours, the activity was found only against Gram-positive bacteria except compound (P11), showing activity against both types of bacteria. Compound (P11) was found to have highest activity against both Gram-positive and Gram-negative bacteria.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Eti Nurwening Sholikhah ◽  
Maulina Diah ◽  
Mustofa ◽  
Masriani ◽  
Susi Iravati ◽  
...  

Pycnarrhena cauliflora (Miers.) Diels., local name sengkubak, is one of indigenous plants from West Kalimantan that has been used as natural flavor. Pycnorrhena cauliflora is one of species of Menispermaceae family which is rich in bisbenzylisoquinoline alkaloids. This alkaloids are known to have various biological activities including antiprotozoal, antiplasmodial, antifungal and antibacterial activities. This study aimed to investigate antimicrobial activity of  the P. cauliflora (Miers.) Diels. methanolic extracts against gram-positive and gram-negative bacteria. The methanolic extract of P. cauliflora (Miers.) Diels., root, leaf and stem were prepared by maceration. The disk-diffusion method was then used to determine the antimicrobial activity of the extracts against Streptococcus pyogenes, S. mutants, Staphylococcus aureus, S. epidermidis, Salmonella typhi, Shigella flexneri, Pseudomonas aeruginosa and Escherichia coli after 18-24 h incubation at 37 oC. Amoxicillin was used as positive control for gram-positive bacteria and ciprofloxacin was used as gram-negative bacteria. The inhibition zones were then measured in mm. Analysis were conducted in duplicates. The results showed in general the methanolic extracts of P. cauliflora (Miers.) Diels. root (inhibition zone diameter= 10-23 mm) were more active than that leaf (0-15 mm) and stem (0-17 mm) extracts against gram-positive bacteria. The zone inhibition diameter of amoxicillin as positive control was 8-42 mm. In addition, the methanolic extracts of P. cauliflora (Miers.) Diels. root (12-17 mm) were also more active than that leaf (0-12 mm) and stem (0-12 mm) extracts against gram-negative bacteria. The zone inhibition diameter of ciprofloxacin as positive control was 33-36 mm. In conclusion, the methanolic extract of P. caulifloria (Miers.) Diels. root is the most extract active against both gram-positive and gram-negative bacteria. Further study will be focused to isolate active compounds in the methanolic extract of the root.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 465-466
Author(s):  
Cinta Sol ◽  
Mónica Puyalto ◽  
Bernat Canal ◽  
Ana Maria Carvajal ◽  
Manuel Gómez ◽  
...  

Abstract The aim of this study was to investigate the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of organic acid salts against six field isolates of Streptococcus suis. The three products evaluated were sodium salt of coconut fatty acids distillate (DIC) alone and two combinations with sodium butyrate (NaBut): DIC70:30, being 70% of NaBut protected with 30% of DIC; and DIC50:50, being 50% of NaBut protected with 50% of DIC. Antimicrobial susceptibility testing was performed to estimate the MIC values for each product and strain by the broth microdilution method at pH 6.0. MBC values were also determined by sub-culturing supernatant from wells without evident bacterial growth. The values of MIC50/MBC50 were calculated as the concentration which inhibited/killed 50% of the isolates tested. The MIC50 showed DIC as the most effective (8 ppm) against S. suis followed by DIC50:50 (32 ppm) and DIC70:30 (64 ppm). The MBC50 demonstrated a similar trend, DIC being the most effective (16 ppm) followed by DIC50:50 (64 ppm) and DIC70:30 (64 ppm). It is well known that butyric acid is a short-chain fatty acid which has strong antimicrobial activity against Gram-negative bacteria. In contrast, coconut fatty acids distillate is a medium-chain fatty acid source (MCFA) rich in lauric acid which has strong antimicrobial activity against Gram-positive bacteria. Both products are generally available as salts to facilitate their application in feed. In this study, the results showed that DIC was the most effective against the Gram-positive bacteria tested, followed by DIC50:50 and DIC70:30, the sodium butyrate-based products. As expected, a higher concentration of MCFA in the tested product was associated with a higher inhibitory and bactericidal activity. Further studies would be required to better understand these interactions as well as in vivo studies to demonstrate the effects on microbial populations.


2014 ◽  
Vol 8 (3) ◽  
pp. 40-45
Author(s):  
Zina Hashem Shehab ◽  
Huda Suhail Abid ◽  
Sumaya Fadhil Hamad ◽  
Sara Haitham

The study was conducted to evaluate the inhibitory activity of methanol extract of Gardenia jasminoides leaves compared with leaf crude extracts for some organic solvents namely Methanol, Ethanol, Petroleum ether, Asetone and Chloroform on growth of some pathogenic bacteria and yeast, which included four gram positive isolates Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Bacillus cereus and gram negative isolates Escherichia coli, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa and some yeasts Candida albicans and Saccharomyces boulardii, by using well diffusion method. The inhibitory activity of extracts in the tested bacterial strains and yeasts was varied according to the type of extracting solvents and are tested microorganisms. The methanol callus extract which grown on Murashige and Skoog (MS) media by using (Naphthalen acitic acid) NAA and (Benzyle adenine) BA as growth regulator highly effective as compared to the other extracts as for inhibition of three gram positive bacteria and three gram negative bacteria,which include Staphylococcus aureus and, Proteus vulgaris, followed by acetone and ethanolic extracts which include two gram positive bacteria and two gram negative bacteria. All extracts had highly effect in growth of Candida albicans while all crude extracts didn’t show any sensitivity against Saccharomyces boulardii, and when we’d done (High Performance Liquid Chromatography) HPLC test for detection of some active compound we found Quinic acid, Iridiods glycosides and Crocin which its rate in fresh callus was higher than fresh leaves.


2012 ◽  
Vol 7 (5) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Alexis Peña ◽  
Luis Rojas ◽  
Rosa Aparicio ◽  
Libia Alarcón ◽  
José Gregorio Baptista ◽  
...  

The essential oil of the leaves of Espeletia nana Cuatrec, obtained by hydrodistillation, was analyzed by GC-MS, which allowed the identification of 24 components, which made up 99.9% of the oil. The most abundant compounds were α-pinene (38.1%), β-pinene (17.2%), myrcene (15.0%), spathulenol (4.2%), bicyclogermacrene (4.0%), α-zingiberene (4.0%), and γhimachalene (3.7%). Antibacterial activity was tested against Gram-positive and Gram-negative bacteria using the agar disk diffusion method. Activity was observed only against Gram-positive bacteria. MIC values were determined for Staphylococcus aureus ATCC 25923(200 μg/mL) and Enterococcus faecalis ATCC 29212 (600 μg/mL).


2016 ◽  
Vol 78 (3-2) ◽  
Author(s):  
Nor Syafawani Sarah Md Saad ◽  
Nik Ahmad Nizam Nik Malek ◽  
Chun Shiong Chong

The aim of this research was to determine the antimicrobial activity of kaolinite modified with antimicrobial compounds against Gram positive and Gram negative bacteria. Copper kaolinite (Cu-kaolinite) was prepared by loading raw kaolinite with copper nitrate trihydrate (CuNO3) while surfactant modified Cu-kaolinite (SM-Cu-kaolinite) was prepared by adding cationic surfactants hexadecyltrimethyl ammonium (HDTMA) on Cu-Kaolinite. Samples was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyzer. The antimicrobial activity of the samples was tested against Gram negative bacteria (Escherichia coli ATCC 11229 and Pseudomonas aeruginosa ATCC 15442), and Gram positive bacteria (Staphylococcus aureus ATCC 6538 and Enterococcus faecalis ATCC 29212) through disc diffusion technique (DDT) and minimum inhibition concentration (MIC). The results showed that the antimicrobial activity of Cu-kaolinite increased after modified with HDTMA due to the synergistic effects of Cu ions and HDTMA molecules on the kaolinite. The antimicrobial activity for surfactant modified Cu-kaolinite was greater for Gram positive bacteria compared to Gram negative bacteria. In conclusion, the attachment of HDTMA on Cu-kaolinite contributed to the enhanced antimicrobial activity against wide spectrum of bacteria (Gram positive and Gram negative bacteria).


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 238 ◽  
Author(s):  
Yamil Liscano ◽  
Constain H. Salamanca ◽  
Lina Vargas ◽  
Stefania Cantor ◽  
Valentina Laverde-Rojas ◽  
...  

Recently, resistance of pathogens towards conventional antibiotics has increased, representing a threat to public health globally. As part of the fight against this, studies on alternative antibiotics such as antimicrobial peptides have been performed, and it has been shown that their sequence and structure are closely related to their antimicrobial activity. Against this background, we here evaluated the antibacterial activity of two peptides developed by solid-phase synthesis, Alyteserin 1c (WT) and its mutant derivative (ΔM), which shows increased net charge and reduced hydrophobicity. These structural characteristics were modified as a result of amino acid substitutions on the polar face of the WT helix. The minimum inhibitory concentration (MIC) of both peptides was obtained in Gram-positive and Gram-negative bacteria. The results showed that the rational substitutions of the amino acids increased the activity in Gram-positive bacteria, especially against Staphylococcus aureus, for which the MIC was one-third of that for the WT analog. In contrast to the case for Gram-positive bacteria, these substitutions decreased activity against Gram-negative bacteria, especially in Escherichia coli, for which the MIC was eight-fold higher than that exhibited by the WT peptide. To understand this, models of the peptide behavior upon interacting with membranes of E. coli and S. aureus created using molecular dynamics were studied and it was determined that the helical stability of the peptide is indispensable for antimicrobial activity. The hydrogen bonds between the His20 of the peptides and the phospholipids of the membranes should modulate the selectivity associated with structural stability at the carboxy-terminal region of the peptides.


Sign in / Sign up

Export Citation Format

Share Document