scholarly journals The effect of porcine reproductive and respiratory syndrome virus and porcine epidemic diarrhea virus challenge on growing pigs I: Growth performance and digestibility1

2016 ◽  
Vol 94 (2) ◽  
pp. 514-522 ◽  
Author(s):  
W. P. Schweer ◽  
K Schwartz ◽  
E. R. Burrough ◽  
K. J. Yoon ◽  
J. C. Sparks ◽  
...  

Abstract Porcine reproductive and respiratory syndrome (PRRS) and porcine epidemic diarrhea (PED) are two diseases costly to the U.S. swine industry. The objective of this study was to determine the impact of PRRS virus and PED virus, alone or in combination, on growth performance, feed efficiency, and digestibility in grower pigs. Forty-two gilts (16 ± 0.98 kg BW) naïve for PRRS and PED were selected and allocated to 1 of 4 treatments. Treatments included 1) a control, 2) PRRS virus infected, 3) PED virus infected, and 4) PRRS+PED coinfection (PRP). Pigs in treatments 2 and 4 were inoculated with a live field strain of PRRS virus via intramuscular and intranasal routes at 0 d after inoculation (dpi). Treatments 3 and 4 were orally inoculated with a cloned PED virus at 15 dpi. Infection with PRRS virus was confirmed by quantitative PCR and seroconversion. Infection with PED virus was confirmed with PCR. Control pigs remained PRRS and PED virus negative throughout the study. All pigs were offered, ad libitum, a standard diet with free access to water. During the test period, PRRS reduced ADG and ADFI by 30 and 26%, respectively (P < 0.05), compared with control pigs, whereas PRP decreased ADG, ADFI, and G:F by 45, 30, and 23%, respectively (P < 0.05). Additional reductions in ADG and G:F were detected in PRP pigs compared with singular PED or PRRS treatments (33 and 16%, respectively). The impact of PED, alone or in combination, on performance (15–21 dpi) reduced ADG (0.66 vs. 0.35 vs. 0.20 kg/d; P < 0.01), ADFI (1.22 vs. 0.88 vs. 0.67 kg/d; P = 0.003), and G:F (0.54 vs. 0.39 vs. 0.31; P = 0.001) compared with control pigs. Compared with control pigs, PRRS infection did not reduce apparent total tract digestibility (ATTD) of nutrients and energy. However, PED infection, alone or in combination, decreased ATTD of DM and energy by 8 and 12%, respectively (P < 0.05). Compared with control pigs, PRP reduced N and OM ATTD by 13 and 3%, respectively (P < 0.05). No significant differences in apparent ileal digestibility (AID) were detected between virus challenges. However, Lys AID tended to be reduced in both PED treatments compared with the control (10 and 12%; P = 0.095). Altogether, PRRS reduced growth but did not alter digestibility. Pigs challenged with PED and, to a greater extent, the coinfection of PED and PRRS viruses had reduced ADG, ADFI, G:F, and ATTD of nutrients and energy.

2017 ◽  
Vol 95 (1) ◽  
pp. 173-181 ◽  
Author(s):  
S. M. Curry ◽  
K. A. Gibson ◽  
E. R. Burrough ◽  
K. J. Schwartz ◽  
K. J. Yoon ◽  
...  

Abstract Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are both members of the family Coronaviridae which induce clinical signs of diarrhea, dehydration, and in some circumstances, mortality. Most research has been focused on isolation, genome sequencing, pathogenicity, and virulence of these viruses, but there is little information on long-term growth performance and tissue accretion of pigs inoculated with PEDV or PDCoV. Therefore, our objective was to determine the effect of PEDV or PDCoV infection on growth performance and tissue accretion over 42 d following inoculation. A total of 75 Choice Genetics Large White Pureline barrows and gilts (BW = 10.81 ± 0.81 kg) at approximately 2 wk post-wean and naïve for PEDV and PDCoV were selected. Pigs were allotted based on BW and sex, stratified across 3 treatments with 8 pens per treatment. Treatments were: 1) Control (n = 8); 2) PEDV inoculated (n = 8); and 3) PDCoV inoculated (n = 8). On day post inoculation (dpi) 2, 5, 7, and 14 pigs were euthanized for tissue collection and analyses from these tissues are discussed elsewhere. Pen feed intake and BW were recorded on dpi 2, 5, 7, and weekly thereafter until dpi 42. On 1 designated pig per pen, initial and final body composition was determined using dual-energy X-ray absorptiometry (DXA) and tissue accretion rates were calculated over 6 wk test period. Peak PEDV infection was noted at 3 dpi compared with 4 dpi for PDCoV pigs as determined by fecal swab quantitative real-time PCR (RT-PCR). Control pigs remained negative for PEDV and PDCoV throughout the experiment. Overall, Control and PDCoV pigs did not differ in ADG, ADFI or G:F (P > 0.05). Compared to Control and PDCoV pigs, the overall 42 d ADFI was reduced in the challenged PEDV pigs (P < 0.05) by 19 and 27%, respectively. PEDV did not significantly reduce the overall ADG or G:F compared with Control and PDCoV pigs; however, the biggest reduction in ADG and ADFI for PEDV pigs was within 14 dpi compared to the Control pigs (P < 0.05). Whole body tissue accretion was altered due to PED, with fat, lean, protein, and bone mineral accretion reductions by 24, 20, 21, and 42%, respectively (P < 0.05) compared with Control pigs. Overall, nursery pig performance was greatly impacted by PEDV challenge. Surprisingly, the PDCoV challenge did not negatively influence nursery pig performance. This study provides further insight into the longitudinal impact swine enteric coronaviruses have on growing pigs.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 216-217
Author(s):  
O L Harrison ◽  
G E Nichols ◽  
J T Gebhardt ◽  
Cassandra K Jones ◽  
Jason C Woodworth ◽  
...  

Abstract Recent research has demonstrated that swine viruses can be transmitted via feed. Chemical feed additives have been suggested for the mitigation of these viruses in complete feed. Therefore, the objective of this study was to evaluate the efficacy of a commercially available formaldehyde-based feed additive, medium chain fatty acid blend (MCFA), and commercially available fatty acid-based products for mitigation of porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) in a feed matrix. Treatments consisted of: 1) non-treated positive control, 2) 0.33% commercial formaldehyde-based product (Sal Curb; Kemin Industries, Inc.; Des Moines, IA), 3) 0.5% MCFA blend (1:1:1 ratio of C6:0, C8:0, and C10:0, Sigma Aldrich, St. Louis, MO), 4) 0.25%, 5) 0.5%, or 6) 1% of commercial dry mono and diglyceride-based product (Furst Strike; Furst-McNess Company, Freeport, IL), 7) 0.25%, 8) 0.5%, or 9) 1% of commercial dry mono and diglyceride-based product (Furst Protect; Furst-McNess Company, Freeport, IL), 10) 0.25%, 11) 0.5%, or 12) 1% dry mono and diglyceride-based experimental product (Furst-McNess Company, Freeport, IL) with 3 replications/treatment. Treatments were applied to complete swine feed before inoculation with 106 TCID50/g of feed with PEDV or PRRSV. Post inoculation feed was held at ambient temperature for 24 h before being analyzed via qRT-PCR. The analyzed values represent the cycle threshold. Formaldehyde and MCFA decreased (P < 0.05) the detectable RNA of PEDV and PRRSV compared to all other treatments. Furst Strike, Furst Protect, and the experimental product did not significantly impact detectability of PEDV or PRRSV RNA. In conclusion, MCFA and formaldehyde treatments are effective at reducing detection of RNA from PEDV and PRRSV in feed.


2019 ◽  
Vol 97 (8) ◽  
pp. 3213-3227 ◽  
Author(s):  
Emma T Helm ◽  
Shelby M Curry ◽  
Carson M De Mille ◽  
Wesley P Schweer ◽  
Eric R Burrough ◽  
...  

Abstract Porcine reproductive and respiratory syndrome (PRRS) virus is one of the most economically significant pig pathogens worldwide. However, the metabolic explanation for reductions in tissue accretion observed in growing pigs remains poorly defined. Additionally, PRRS virus challenge is often accompanied by reduced feed intake, making it difficult to discern which effects are virus vs. feed intake driven. To account for this, a pair-fed model was employed to examine the effects of PRRS challenge and nutrient restriction on skeletal muscle and liver metabolism. Forty-eight pigs were randomly selected (13.1 ± 1.97 kg BW) and allotted to 1 of 3 treatments (n = 16 pigs/treatment): 1) PRRS naïve, ad libitum fed (Ad), 2) PRRS-inoculated, ad libitum fed (PRRS+), and 3) PRRS naïve, pair-fed to the PRRS-inoculated pigs’ daily feed intake (PF). At days postinoculation (dpi) 10 and 17, 8 pigs per treatment were euthanized and tissues collected. Tissues were assayed for markers of proteolysis (LM only), protein synthesis (LM only), oxidative stress (LM only), gluconeogenesis (liver), and glycogen concentrations (LM and liver). Growth performance, feed intake, and feed efficiency were all reduced in both PRRS+ and PF pigs compared with Ad pigs (P < 0.001). Furthermore, growth performance and feed efficiency were additionally reduced in PRRS+ pigs compared with PF pigs (P < 0.05). Activity of most markers of LM proteolysis (μ-calpain, 20S proteasome, and caspase 3/7) was not increased (P > 0.10) in PRRS+ pigs compared with Ad pigs, although activity of m-calpain was increased in PRRS+ pigs compared with Ad pigs (P = 0.025) at dpi 17. Muscle reactive oxygen species production was not increased (P > 0.10) in PRRS+ pigs compared with Ad pigs. However, phosphorylation of protein synthesis markers was decreased in PRRS+ pigs compared with both Ad (P < 0.05) and PF (P < 0.05) pigs. Liver gluconeogenesis was not increased as a result of PRRS; however, liver glycogen was decreased (P < 0.01) in PRRS+ pigs compared with Ad and PF pigs at both time points. Taken together, this work demonstrates the differential impact a viral challenge and nutrient restriction have on metabolism of growing pigs. Although markers of skeletal muscle proteolysis showed limited evidence of increase, markers of skeletal muscle synthesis were reduced during PRRS viral challenge. Furthermore, liver glycogenolysis seems to provide PRRS+ pigs with glucose needed to fuel the immune response during viral challenge.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 93-93
Author(s):  
Jesus A Acosta ◽  
Gwendolyn M Jones ◽  
John F Patience

Abstract The objective of this study was to evaluate the impact of deoxynivalenol (DON), derived from contaminated corn, on growth performance and blood metabolites. A total of 32 growing pigs (initial BW 73.1 ± 1.2 kg; L337 × Camborough, PIC, Hendersonville, TN) were randomly allotted in individual pens to 1 of 2 treatments: a non-contaminated control diet (CTL) and a diet containing 1.8 mg DON/kg (CTL+DON). Upon analysis, CTL+DON also contained 1.9 mg zearalenone/kg and 1.0 mg total fumonisins/kg. On d 1, blood samples were obtained at 60, 120 and 240 min following resumed access to feed. Pigs had ad libitum access to feed thereafter and for 28 d in total. Data were analyzed using the MIXED procedure of SAS with initial BW, sex and treatment as fixed effects, and blood parameters the repeated measures. Compared with CTL, pigs fed CTL+DON had decreased final BW (102.9 vs 87.5 kg; P < 0.001), ADG (1.06 vs 0.51 kg; P < 0.001) and ADFI (2.97 vs 1.54 kg; P < 0.001). Mycotoxins did not affect G:F (0.35 vs 0.32; P = 0.234 for CTL and CTL+DON, respectively). Compared to CTL, pigs fed CTL+DON had increased levels of blood cholecystokinin, a hormone involved in satiety and digestion (32.1 vs 43.3 pg/mL; P = 0.048), increased ghrelin, a hormone that stimulates appetite and promotes fat deposition (345 vs 654 pg/mL; P = 0.011), a tendency for decreased blood urea nitrogen (19.6 vs 17.1 mg/dL; P = 0.076), and increased creatine kinase (2,826 vs 4,920 IU/L; P = 0.027). No treatment differences were observed for circulating creatinine, glucose, albumin, or alkaline phosphatase. In conclusion, mycotoxin contamination substantially impaired feed intake and growth. Pigs offered mycotoxin-contaminated feed had altered blood parameters related to appetite regulation and nutrient metabolism. However, it was not possible to determine if these differences were due to the mycotoxin contamination or to reduced feed intake.


2011 ◽  
Vol 105 (10) ◽  
pp. 1471-1479 ◽  
Author(s):  
Anne Morise ◽  
Bernard Sève ◽  
Katherine Macé ◽  
Corinne Magliola ◽  
Isabelle Le Huërou-Luron ◽  
...  

Small birth weight and excess of early protein intake are suspected to enhance later obesity risk. The present study was undertaken to determine the impact of neonatal diets differing in protein content on growth, body composition and hormonal status of 70-d-old pigs born with normal weight (NW) or small weight (SW). At 7 d of age, male and female suckled piglets were assigned to the NW (approximately 1·4 kg at birth) or SW (approximately 0·99 kg at birth) groups. They were fed milk replacers formulated to provide an adequate protein (AP) or a high protein (HP) supply for 3 weeks. From weaning to 70 d of age, all animals received ad libitum the same standard diet. Growth rates were higher (P < 0·05) in HP piglets than in AP piglets during formula feeding and remained higher (P < 0·05) only in HP male pigs thereafter. No difference in feed consumption was detected between groups during the periods examined. Carcass lipid content and the relative weight of perirenal adipose tissue did not differ between the AP and HP pigs. Whereas plasma leptin concentration was higher (P < 0·05) in HP pigs than in AP pigs with a marked difference in SW pigs, plasma insulin-like growth factor (IGF)-I concentration and expression of IGF system genes were not affected by the diets. In summary, a HP intake during the suckling period induced an increase in growth rate that persisted only in male pigs during the post-weaning period. This response was not associated with any difference in adiposity parameters in this period.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qian Zhang ◽  
Dan Yi ◽  
Changzheng Ji ◽  
Tao Wu ◽  
Manli Wang ◽  
...  

Porcine epidemic diarrhea virus (PEDV) has reemerged as the main pathogen of piglets due to its high mutation feature. Monolaurin (ML) is a natural compound with a wide range of antibacterial and antiviral activities. However, the role of ML in PEDV infection is still unknown. This study aimed to evaluate the effect of ML on the growth performance, intestinal function, virus replication and cytokine response in piglets infected with PEDV, and to reveal the mechanism through proteomics analysis. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 days before PEDV infection. Results showed that although there was no significant effect on the growth performance of piglets, ML administration alleviated the diarrhea caused by PEDV infection. ML administration promoted the recovery of intestinal villi, thereby improving intestinal function. Meanwhile, PEDV replication was significantly inhibited, and PEDV-induced expression of IL-6 and IL-8 were decreased with ML administration. Proteomics analyses showed that 38 proteins were differentially expressed between PEDV and ML+PEDV groups and were significantly enriched in the interferon-related pathways. This suggests ML could promote the restoration of homeostasis by regulating the interferon pathway. Overall, the present study demonstrated ML could confer a protective effect against PEDV infection in piglets and may be developed as a drug or feed additive to prevent and control PEDV disease.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Pengcheng Wang ◽  
Juan Bai ◽  
Xuewei Liu ◽  
Mi Wang ◽  
Xianwei Wang ◽  
...  

Abstract Porcine epidemic diarrhea virus (PEDV) causes lethal diarrhea in suckling piglets, leading to severe economic losses worldwide. There is an urgent need to find new therapeutic methods to prevent and control PEDV. Not only is there a shortage of commercial anti-PEDV drugs, but available commercial vaccines fail to protect against highly virulent PEDV variants. We screened an FDA-approved library of 911 natural products and found that tomatidine, a steroidal alkaloid extracted from the skin and leaves of tomatoes, demonstrates significant inhibition of PEDV replication in Vero and IPEC-J2 cells in vitro. Molecular docking and molecular dynamics analysis predicted interactions between tomatidine and the active pocket of PEDV 3CL protease, which were confirmed by fluorescence spectroscopy and isothermal titration calorimetry (ITC). The inhibiting effect of tomatidine on 3CL protease was determined using cleavage visualization and FRET assay. Tomatidine-mediated blocking of 3CL protease activity in PEDV-infected cells was examined by western blot detection of the viral polyprotein in PEDV-infected cells. It indicates that tomatidine inhibits PEDV replication mainly by targeting 3CL protease. In addition, tomatidine also has antiviral activity against transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome virus (PRRSV), encephalo myocarditis virus (EMCV) and seneca virus A (SVA) in vitro. These results may be helpful in developing a new prophylactic and therapeutic strategy against PEDV and other swine disease infections.


2018 ◽  
Vol 96 (suppl_2) ◽  
pp. 124-124
Author(s):  
S M Ebarb ◽  
C M Fowler ◽  
P Xue ◽  
S B Williams ◽  
J C Peters ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document