scholarly journals Raster-based Model for Mass Movement in Malang Regency, East Java, Indonesia.

Author(s):  
Sandy Budi Wibowo ◽  
Franck Lavigne ◽  
Siddiq Luqman Rifai ◽  
Rani Rahim Suryandari ◽  
Idea Wening Nurani ◽  
...  

Strengthening geospatial technology is very important in order to support disaster mitigation strategy, to manage vulnerable communities and to protectcritical environments. The main challenge in identifying disaster characteristics such as mass movements is the lack of direct observation during the event because it is too dangerous for researchers. Geo-Information Technology as a product of Geographic Information Science can be used as a solution in order to model the characteristics of mass movements. The purpose of this study is focused on identifying landslide processes from point of view ofraster-based model. The method of thisresearch emphasizes dynamic landslide model derived from timeseries raster calculation using MassMov2D algorithm. The geographic database that was built for spatial modeling comes from pedogeomorphological and Remote Sensing survey outputs, especially topographic data, landforms and soil physical properties. The result shows that the relationship between pixels (neighborhood) is determined by the topology of the energy gradient line direction which allowsto transfer the value between each pixel.The movement of landslide material starts from the toe. This decreases the stability of the landslide material in the main body of the landslide and generate progressive erosion.The raster-based model can finally reconstruct and identify the stages of initiation, transport and deposition landslide material.

Author(s):  
Christopher Gomez ◽  
Norifumi Hotta

On the 6th September at 03:08AM local time, the Iburi-Hokkaido Earthquake, only 33 km deep triggers >5,000 co-seismic mass-movements in the hills in a 25 km radius from the epicenter. Although the majority of the mass-movements occurred in complex-geometry valley with the coalescence of deposits, a small sub-set of 59 events deposited on the semi-horizontal val-ley-floor generating separated deposits that were studied in the present contribution. The aim of the present contribution was to contribute to the existing databases of empirical relationships based on planform and vertical dataset, and to define the scalars of those relations that charac-terize the mass-movements of the Iburi-Hokkaido earthquake, with the overarching goal of generating predictors for hazard-mapping. To reach these objectives, the methodology relies on LiDAR data flown in the aftermath of the earthquake as well as aerial photographs. Using Geo-graphical Information Science (GIS) tools planform and vertical parameters were extracted to calculate the power-law relations between areas and volume, between the Fahrböschung and the volume of the deposits, as well as other geometric relationships. Results have shown that the relation S=k〖V_d〗^(2/3) where S is the surface area of a deposit and Vd the volume, and k a scalar that is function of S: k=2.1842 ln⁡(S)-10.167 with a R2 of 0.52, and this relation is improved for the open-slope mass-movements but not the valley-confined ones, that present more varia-bility. The Fahrböschung for events that started as valley-confined mass-movements was Fc = -0.043ln(D) + 0.7082 with a R2 of 0.5m while for open-slope mass-movements, the Fo = -0.046ln(D) + 0.7088 with a R2 of 0.52. These results contribute to the growing co-seismic land-slide database and they can also be the base to understand the role of the counter-slopes and complex topography on the spread and distance travelled by the mass-movement deposits.


2000 ◽  
Vol 22 ◽  
Author(s):  
Adrian E. Scheidegger

The study describes the neotectonic effects on morphology of mass movements. Whilst the external (meteorological or seismic) processes are the immediate triggers of mass movements, their location and orientation is pre-designed by the tectonics of the area. The direction of mass movement is naturally in the direction down the slope of the valleys. If the latter are natural, they are parallel to the prevailing joints, which are shearing features of the neotectonic stress field. Most landslides, thus, are "shear" - or "wedge"-type failures. However, this is not true in the case of older valleys having been cause d e.g. by nappe-edges emplaced much before the present-day resulting in "mountain fractures" and "valley closures", and particularly by artificial cuts: in such cases, slides occur mainly on faces oriented at right angles to one of the principal neotectonic stress directions. Evidently, the stability of the object is reduced in this case and slides occur more frequently than if the valleys or cuts run parallel to such principal stress directions. These findings are illustrated by specific examples from the Himalaya and the Alps.


2002 ◽  
Vol 67 (1) ◽  
pp. 341-352 ◽  
Author(s):  
Murray A. Marshall

Spaces of orderings provide an abstract framework in which to study spaces of orderings of formally real fields. Spaces of orderings of finite chain length are well understood [9, 11]. The Isotropy Theorem [11] and the extension of the Isotropy Theorem given in [13] are the main tools for reducing questions to the finite case, and these are quite effective. At the same time, there are many questions which do not appear to reduce in this way. In this paper we consider four such questions, for a space of orderings (X, G).1. Is it true that every positive primitive formula P(a) with parameters a in G which holds in every finite subspace of (X, G) necessarily holds in (X, G)?2. If f: X → ℤ is continuous and Σx∈Vf(x) ≡ 0 mod ∣V∣ holds for all fans V in X with ∣V∣ ≤ 2n, does there exist a form ϕ with entries in G such that mod Cont(X, 2nℤ)?3. Is it true that Cont(X, 2nℤ) ∩ Witt(X, G) = In(X, G), where I(X, G) denotes the fundamental ideal?4. Is the separating depth of a constructible set C in X necessarily bounded by the stability index of (X, G)?The unexplained terminology and notation is explained later in the main body of the paper. In a certain sense Question 1 is the main question. At the same time, Questions 2, 3 and 4 are of considerable interest, both from the point of view of quadratic form theory and from the point of view of real algebraic geometry.


1978 ◽  
Vol 17 (01) ◽  
pp. 28-35
Author(s):  
F. T. De Dombal

This paper discusses medical diagnosis from the clinicians point of view. The aim of the paper is to identify areas where computer science and information science may be of help to the practising clinician. Collection of data, analysis, and decision-making are discussed in turn. Finally, some specific recommendations are made for further joint research on the basis of experience around the world to date.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 229
Author(s):  
Filippo Silva ◽  
Leopoldo Sitia ◽  
Raffaele Allevi ◽  
Arianna Bonizzi ◽  
Marta Sevieri ◽  
...  

Protein nanocages represent an emerging candidate among nanoscaled delivery systems. Indeed, they display unique features that proved to be very interesting from the nanotechnological point of view such as uniform structure, stability in biological fluids, suitability for surface modification to insert targeting moieties and loading with different drugs and dyes. However, one of the main concerns regards the production as recombinant proteins in E. coli, which leads to a product with high endotoxin contamination, resulting in nanocage immunogenicity and pyrogenicity. Indeed, a main challenge in the development of protein-based nanoparticles is finding effective procedures to remove endotoxins without affecting protein stability, since every intravenous injectable formulation that should be assessed in preclinical and clinical phase studies should display endotoxins concentration below the admitted limit of 5 EU/kg. Different strategies could be employed to achieve such a result, either by using affinity chromatography or detergents. However, these strategies are not applicable to protein nanocages as such and require implementations. Here we propose a combined protocol to remove bacterial endotoxins from nanocages of human H-ferritin, which is one of the most studied and most promising protein-based drug delivery systems. This protocol couples the affinity purification with the Endotrap HD resin to a treatment with Triton X-114. Exploiting this protocol, we were able to obtain excellent levels of purity maintaining good protein recovery rates, without affecting nanocage interactions with target cells. Indeed, binding assay and confocal microscopy experiments confirm that purified H-ferritin retains its capability to specifically recognize cancer cells. This procedure allowed to obtain injectable formulations, which is preliminary to move to a clinical trial.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Wonhee Kim ◽  
Sangmin Suh

For several decades, disturbance observers (DOs) have been widely utilized to enhance tracking performance by reducing external disturbances in different industrial applications. However, although a DO is a verified control structure, a conventional DO does not guarantee stability. This paper proposes a stability-guaranteed design method, while maintaining the DO structure. The proposed design method uses a linear matrix inequality (LMI)-based H∞ control because the LMI-based control guarantees the stability of closed loop systems. However, applying the DO design to the LMI framework is not trivial because there are two control targets, whereas the standard LMI stabilizes a single control target. In this study, the problem is first resolved by building a single fictitious model because the two models are serial and can be considered as a single model from the Q-filter point of view. Using the proposed design framework, all-stabilizing Q filters are calculated. In addition, for the stability and robustness of the DO, two metrics are proposed to quantify the stability and robustness and combined into a single unified index to satisfy both metrics. Based on an application example, it is verified that the proposed method is effective, with a performance improvement of 10.8%.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


Inorganics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 20
Author(s):  
Antonio A. García-Valdivia ◽  
Estitxu Echenique-Errandonea ◽  
Gloria B. Ramírez-Rodríguez ◽  
José M. Delgado-López ◽  
Belén Fernández ◽  
...  

Two new coordination polymers (CPs) based on Zn(II) and Cd(II) and 1H-indazole-6-carboxylic acid (H2L) of general formulae [Zn(L)(H2O)]n (1) and [Cd2(HL)4]n (2) have been synthesized and fully characterized by elemental analyses, Fourier transformed infrared spectroscopy and single crystal X-ray diffraction. The results indicate that compound 1 possesses double chains in its structure whereas 2 exhibits a 3D network. The intermolecular interactions, including hydrogen bonds, C–H···π and π···π stacking interactions, stabilize both crystal structures. Photoluminescence (PL) properties have shown that compounds 1 and 2 present similar emission spectra compared to the free-ligand. The emission spectra are also studied from the theoretical point of view by means of time-dependent density-functional theory (TD-DFT) calculations to confirm that ligand-centred π-π* electronic transitions govern emission of compound 1 and 2. Finally, the PL properties are also studied in aqueous solution to explore the stability and emission capacity of the compounds.


1980 ◽  
Vol 17 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Luis E. Vallejo

A new approach to the stability analysis of thawing slopes at shallow depths, taking into consideration their structure (this being a mixture of hard crumbs of soil and a fluid matrix), is presented. The new approach explains shallow mass movements such as skin flows and tongues of bimodal flows, which usually take place on very low slope inclinations independently of excess pore water pressures or increased water content in the active layer, which are necessary conditions in the methods available to date to explain these movements.


Author(s):  
Bo Xiao ◽  
Hak-Keung Lam ◽  
Zhixiong Zhong

AbstractThe main challenge of the stability analysis for general polynomial control systems is that non-convex terms exist in the stability conditions, which hinders solving the stability conditions numerically. Most approaches in the literature impose constraints on the Lyapunov function candidates or the non-convex related terms to circumvent this problem. Motivated by this difficulty, in this paper, we confront the non-convex problem directly and present an iterative stability analysis to address the long-standing problem in general polynomial control systems. Different from the existing methods, no constraints are imposed on the polynomial Lyapunov function candidates. Therefore, the limitations on the Lyapunov function candidate and non-convex terms are eliminated from the proposed analysis, which makes the proposed method more general than the state-of-the-art. In the proposed approach, the stability for the general polynomial model is analyzed and the original non-convex stability conditions are developed. To solve the non-convex stability conditions through the sum-of-squares programming, the iterative stability analysis is presented. The feasible solutions are verified by the original non-convex stability conditions to guarantee the asymptotic stability of the general polynomial system. The detailed simulation example is provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed approach is more capable to find feasible solutions for the general polynomial control systems when compared with the existing ones.


Sign in / Sign up

Export Citation Format

Share Document