scholarly journals Physical, mechanical, and decay resistance properties of heat-treated wood by Besson® process of three European hardwood species

2021 ◽  
pp. 129-139
Author(s):  
Maxime Ninane ◽  
Caroline Pollet ◽  
Jacques Hébert ◽  
Benoit Jourez

Description of the subject. In Europe, the heat treatment of native wood species is gradually becoming an industrial reality. It provides a promising alternative to both the use of naturally durable, essentially tropical woods and the use of chemical preservative treatments based on biocides. Objectives. The aim of this study is to quantify the effect of heat treatment on the physico-mechanical and decay resistance properties of three native hardwood species (oak, ash, beech + steamed beech). Method. The wood was heat-treated in accordance with the Besson® process. The standard physical and mechanical tests including hardness, modulus of elasticity in static bending, static bending, axial compression, splitting and impact bending strengths, have been performed on 15 treated and 15 control associated samples for each species. The standard durability test on fungi exposed 60 treated and 60 control samples to each fungus. Results. The results show a decrease in the equilibrium moisture content and an increase in dimensional stability of heat-treated wood for the three species studied. The modulus of elasticity, hardness and axial compression strength increase slightly after the heat treatment, while static and impact bending strength and splitting strength may considerably decrease. The fungal durability of oak heartwood and ash increased until class 1, beech and steamed beech until class 3. Conclusions. The global approach of this study allows a complete and precise characterization of the technological properties of three native hardwood species after heat treatment. New uses of these native species can thus be explored.

2021 ◽  
Vol 70 (7) ◽  
pp. 522-527
Author(s):  
Toru TANAKA ◽  
Takafumi ITOH ◽  
Yoriko IWAMOTO ◽  
Yuka MIYOSHI ◽  
Hiroaki HORIYAMA ◽  
...  

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5574-5585
Author(s):  
Intan Fajar Suri ◽  
Jong Ho Kim ◽  
Byantara Darsan Purusatama ◽  
Go Un Yang ◽  
Denni Prasetia ◽  
...  

Color changes were tested and compared for heat-treated Paulownia tomentosa and Pinus koraiensis wood treated with hot oil or hot air for further utilization of these species. Hot oil and hot air treatments were conducted at 180, 200, and 220 °C for 1, 2, and 3 h. Heat-treated wood color changes were determined using the CIE-Lab color system. Weight changes of the wood before and after heat treatment were also determined. The weight of the oil heat-treated wood increased considerably but it decreased in air heat-treated wood. The oil heat-treated samples showed a greater decrease in lightness (L*) than air heat-treated samples. A significant change in L* was observed in Paulownia tomentosa. The red/green chromaticity (a*) of both wood samples increased at 180 and 200 °C and slightly decreased at 220 °C. The yellow/blue chromaticity (b*) in both wood samples increased at 180 °C, but it rapidly decreased with increasing treatment durations at 200 and 220 °C. The overall color change (ΔE*) in both heat treatments increased with increasing temperature, being higher in Paulownia tomentosa than in Pinus koraiensis. In conclusion, oil heat treatment reduced treatment duration and was a more effective method than air heat treatment in improving wood color.


2014 ◽  
Vol 2 ◽  
pp. 345-352 ◽  
Author(s):  
Cristina Marinela Olarescu ◽  
Mihaela Campean

Heat treatment is renowned as the most environmentally friendly process of dimensional stabilization that can be applied to wood, in order to make it suitable for outdoor uses. It also darkens wood color and improves wood durability. The intensity of heat treatment can be appreciated by means of two parameters: the color change occured in wood due to the high temperature, and the mass loss, which is a measure of the degree of thermal degradation. In order to find a mathematical correlation between these two parameters, an experimental study was conducted with four European wood species, which were heat-treated at 180°C and 200ºC, for 1-3 hours, under atmosheric pressure.The paper presents the results concerning the color changes and mass losses recorded for the heat-treated wood samples compared to untreated wood.  For all four species, the dependency between the color change and the mass loss was found to be best described by a logarithmic regression equation with R2 of 0.93 to 0.99 for the soft species (spruce, pine and lime), and R2 of 0.77 for beech. The results of this study envisage to simplify the assessment procedure of the heat treatment efficiency, by only measuring the color – a feature that is both convenient and cost-effective. 


Holzforschung ◽  
2014 ◽  
Vol 68 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Yonggun Park ◽  
Chang-Deuk Eom ◽  
Yeonjung Han ◽  
Jun-Ho Park ◽  
Yoon-Seong Chang ◽  
...  

Abstract Pitch pine (P. rigida) wood was treated with superheated steam (SHS) and the subsequent effects due to drying and heat treatment (HT) were observed. The following treatment parameters were tested: 180°C air HT, 220°C air HT, 0.1 MPa–180°C SHS HT, 0.1 MPa–220°C SHS HT, 0.5 MPa–180°C SHS HT, and 0.5 MPa–220°C SHS HT. No drying checks were observed in the specimens (500×150×50 mm3) treated at 0.5 MPa–220°C SHS and with these treatment parameters, equilibrium moisture content (EMC) was the lowest. Low EMC has an effect on physical properties such as shrinkage, compressive strength parallel to the grain, bending strength, hardness, and decay resistance. Based on the results, it is expected that the green wood in a large scale is possible to be simultaneously dried and heat-treated without occurrence of checks by the SHS HT process.


Author(s):  
Lijie Qu ◽  
Zhenyu Wang ◽  
Jing Qian ◽  
Zhengbin He ◽  
Songlin Yi

Abstract Acidic aluminum sulfate hydrolysis solutions can be used to catalyze the thermal degradation of wood in a mild temperature environment, and thus reduce the temperature required for heat treatment process. To improve the dimensional and thermal stability of Chinese fir during heat treatment at 120 °C, 140 °C and 160 °C, this study investigated the effects of soaking pretreatment with 5%, 10% and 15% aluminum sulfate on the chemical and structural changes of the heat-treated Chinese fir. The results indicated that the samples treated at 15% aluminum sulfate concentration and 160 °C heat treatment achieved the best dimensional and thermal stability. Chemical analyses by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the catalysis of aluminum sulfate resulted in degradation of hemicelluloses during the heat treatment, and an increase in the soaking concentration and heat treatment temperature also affected the thermal degradation of celluloses. The scanning electron microscope (SEM) and mass changes test results proved that the hydrolyzed aluminum flocs mainly adhered to the inner wall of the wood tracheid as spherical precipitates, and when the soaking concentration reached 10% and 15%, a uniform soaking effect could be achieved. The thermogravimetric (TG) analysis revealed the soaking pretreatment effectively improved the thermal stability of the heat-treated wood by physically wrapping and promoting the formation of a carbon layer on the wood surface during heat treatment. Thus, aluminum sulfate soaking pretreatment exerted a great effect on the dimensional and thermal stability of wood, allowing heat treatment to be performed at a lower temperature.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5322
Author(s):  
Idalina Domingos ◽  
Umit Ayata ◽  
José Ferreira ◽  
Luisa Cruz-Lopes ◽  
Ali Sen ◽  
...  

Chemical composition influences the calorific power of wood, mainly due to the calorific power of structural compounds and extractives. Heat treatment changes the chemical composition of treated wood. This work studies the relationship between chemical composition and calorific power improvement by heat treatment. Samples were heat-treated by the ThermoWood process ® for 1 h and 2 h. High heating value (HHV) and chemical composition; lignin, cellulose, hemicelluloses and extractives in dichloromethane, ethanol, and water were determined. The HHV of untreated wood ranged between 18.54–19.92 MJ/kg and increased with heat treatment for all the tested species. A positive linear correlation was found between HHV and Klason lignin (R2 = 0.60). A negative trend was observed for holocellulose, cellulose, and hemicelluloses content against HHV, but with low determination coefficients for linear regression. The best adjust for polysaccharides was found for hemicelluloses content. A positive correlation could be found for dichloromethane extractives (R2 = 0.04). The same was obtained in relation to ethanol extractives with R2 = 0.20. For water and total extractives, no clear positive or negative trends could be achieved. The results showed that the HHV of wood increased with heat treatment and that this increase was mainly due to the increase in lignin content.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Vlatka Jirouš-Rajković ◽  
Josip Miklečić

Heat treatment is a method of wood modification with increasing market acceptance in Europe. The major patented European commercial heat treatment processes have trade names ThermoWood, Platowood, Retiwood, Le Bois Perdure, and Oil-Heat-Treated Wood (OHT). To what extent modification of wood affects the resistance of wood to weathering is also an important aspect for wood applications, especially where appearance is important. Unfortunately, heat-treated wood has poor resistance to weathering, and surface treatment with coatings is required for both protection and aesthetic reasons. As a substrate for coating, heat-treated wood has altered characteristics such as lower hygroscopicity and liquid water uptake and changed acidity, wettability, surface free energy, and anatomical microstructure. Various wood species, heat treatment method, treatment intensity, and treatment conditions exhibited a different extent of changes in wood properties. These altered properties could affect coating performance on heat-treated wood. The reported changes in acidity and in surface energy due to heat treatments are inconsistent with one another depending on wood species and temperature of the treatments. This paper gives an overview of the research results with regards to properties of heat-treated wood that can affect coating performance and weathering of uncoated and coated heat-treated wood.


2012 ◽  
Vol 468-471 ◽  
pp. 1118-1122
Author(s):  
Yan Jun Li ◽  
Lan Xing Du ◽  
Gou Ying Hu ◽  
Xing Xia Ma

To enhance decay resistance, the effect of heat treatment and the variation of chemical composition on Chinese Fir and Pine were investigated in this study — heat treatment temperature was 170°C, 190°C and 210°C, respectively, heat treatment time was 2, 3 and 4hours, respectively. Both of them were subsequently exposed to white-rot fungus and brown-rot fungus. The results showed that:(1) With the increasing of the heat treatment, decay resistance of Chinese Fir and Pine were improved, anti-corrosion of Pine after being heat treated at 190°C which were exposed to write-rot fungus can reach I, anti-corrosion of Chinese Fir after being heat treated at 170°C treated which were exposed to brown-rot fungus could reach I yet, After being heat treated at 210°C for 3 hours , the Chinese fir samples had no measurable weight loss when exposed to the write-rot fungus.(2) There was no remarkable influence on both Chinese Fir and Pine by heat treatment time.(3) The moisture content of Chinese Fir and Pine were lower than the moisture content that the rot fungus need, macromolecule chains such as cellulose and hemicellulose broke down, their contents decreased, and the hemicellulose decomposed into acetic acid, they prevented the growth of rot fungus.


2017 ◽  
Vol 9 (3) ◽  
pp. 12
Author(s):  
Razak Wahab ◽  
Ros Syazmini M. Ghani ◽  
Hashim W. Samsi ◽  
Mohd Sukhairi M. Rasat

This study was carried to investigate changes in the oil heat treated 18-years old of planted Acacia mangium. Harvested trees segregated into bottom, middle and top portions containing heartwood and sapwood were oil heat treated in stainless tank with palm crude oil as heating medium at temperatures of 180oC, 200oC and 220oC for 30, 60 and 90 minutes respectively. The evaluation of the changes in the wood were performed by standards using a Minolta Chroma Meter, TAPPI Standard T204 om-88, TAPPI Standard T203 cm-99, TAPPI Standard T222 cm-02, and BS EN 310:1993 static bending tests. The relationship between the changes in the colour, mechanical and chemical composition, were made using correlation analysis. The result showed oil-heat treatment reduced the lightness of the wood and darkened the both parts of the wood. The strength of the wood reduced slightly after the oil-heat treatment. In the chemical compositions, the percentages of the holocellulose, α-cellulose, hemicellulose and extractive contents decrease with the increase in treatment duration and temperature. The oil heat treatment process at 200°C for duration 60 minutes is recommended for acacia mangium wood as it improved the colour of Acacia mangium and standardized the colour of sapwood and heartwood. The loss in strength at this temperature and duration is acceptable as the treated wood only loss up to 15% strength in MOR and 10.7% in MOE.


Holzforschung ◽  
2003 ◽  
Vol 57 (3) ◽  
pp. 301-307 ◽  
Author(s):  
M. Pétrissans ◽  
P. Gérardin ◽  
I. El bakali ◽  
M. Serraj

Summary The aim of this work was to study the wettability and chemical composition of heat-treated wood. Heat treatment was performed at 240°C under inert atmosphere on four European wood species (pine, spruce, beech and poplar). Contact angle measurements before and after treatment indicated a significant increase in wood hydrophobicity. Advancing contact angles of a water drop were in all cases systematically higher for heat-treated than for untreated wood. Chemical modifications of wood after heat treatment were investigated using FTIR and 13C NMR analysis. FTIR spectra indicated little structural change which could be attributed either to carbon-carbon double bond formation or to adsorbed water. NMR spectra also revealed little chemical change except for the degree of cellulose crystallinity which was considerably higher in heat-treated wood and could explain the higher contact angles.


Sign in / Sign up

Export Citation Format

Share Document