scholarly journals Bonding between high-performance polymer processed by Fused Filament Fabrication and PEEK/carbon fiber laminate

2021 ◽  
Author(s):  
Isciane Caprais ◽  
Pierre Joyot ◽  
Emmanuel Duc ◽  
Simon Deseur

Automated fiber placement processes could be combined with additive manufacturing to produce more functionally complex composite structures with more flexibility. The challenge is to add functions or reinforcements to PEEK/carbon composite parts manufactured by automated fiber placement process, with additive manufacturing by fused filament fabrication. This consists of extruding a molten polymer through a nozzle to create a 3D part. Bonding between polymer filaments is a thermally driven phenomenon and determines the integrity and the final mechanical strength of the printed part. 3d-printing high performance polymers is still very challenging because they involve high thermal gradients during the process. The purpose of this work is to find a process window where the bonding strength is maximized between the composite laminate and the first layer of printed polymer, and inside the printed function as well. Experimental measurements of the temperature profiles at the interface between a composite substrate and 3d-printed PEI under different processing conditions were carried out. The interface was observed using microscopic sections. The methodology for studying the impact of printing parameters on the cohesion and adhesion of printed parts with a composite laminate is described. This work provides insights about the influence of processing conditions on the bond formation between high-performance polymer surfaces. It highlights the importance of controlling the thermal history of the materials all along the process.

2020 ◽  
Vol 246 ◽  
pp. 112427
Author(s):  
Cong Zhao ◽  
Xianfeng Wang ◽  
Xingyu Liu ◽  
Cheng Ma ◽  
Qiyi Chu ◽  
...  

2020 ◽  
Vol 233 ◽  
pp. 111700
Author(s):  
Minh Hoang Nguyen ◽  
Avinkrishnan A. Vijayachandran ◽  
Paul Davidson ◽  
Damon Call ◽  
Dongyeon Lee ◽  
...  

Author(s):  
Gre´goire Lepoittevin ◽  
Markus Zogg ◽  
Paolo Ermanni

A parametric study on composite laminate plates with integrated damping treatment is realized. The goal is to assess the impact of a viscoelastic core on the mechanical performances as well as on the vibration damping efficiency. This work considers as design parameters the damping layer thickness and its position in the laminate lay-up. The obtained results enable to propose a guideline for multifunctional composite structure with intergrated damping treatment.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4161 ◽  
Author(s):  
Vincenzo Tagliaferri ◽  
Federica Trovalusci ◽  
Stefano Guarino ◽  
Simone Venettacci

In this study, the authors present a comparative analysis of different additive manufacturing (AM) technologies for high-performance components. Four 3D printers, currently available on the Italian national manufacturing market and belonging to three different AM technologies, were considered. The analysis focused on technical aspects to highlight the characteristics and performance limits of each technology, economic aspects to allow for an assessment of the costs associated with the different processes, and environmental aspects to focus on the impact of the production cycles associated with these technologies on the ecosystem, resources and human health. This study highlighted the current limits of additive manufacturing technologies in terms of production capacity in the case of large-scale production of plastic components, especially large ones. At the same time, this study highlights how the geometry of the object to be developed greatly influences the optimal choice between the various AM technologies, in both technological and economic terms. Fused deposition modeling (FDM) is the technology that exhibits the greatest limitations hindering mass production due to production times and costs, but also due to the associated environmental impact.


2019 ◽  
Vol 3 (2) ◽  
pp. 56 ◽  
Author(s):  
Falk Heinecke ◽  
Christian Willberg

The automated fiber placement process (AFP) enables the manufacturing of large and geometrical complex fiber composite structures with high quality at low cycle times. Although the AFP process is highly accurate and reproducible, manufacturing induced imperfections in the produced composite structure occur. This review summarizes and classifies typical AFP-related manufacturing defects. Several methodologies for evaluating the effects of such manufacturing defects from the literature are reviewed. This review paper presents recent scientific contributions and discusses proposed experimental and simulation-based methodologies. Among the identified ten defect classes, gaps and overlaps are predominant. This paper focuses then on methods for modelling and assessing gaps and overlaps. The state of the art in modelling gaps and overlaps and assessing their influence on mechanical properties is presented. Finally, research gaps and remaining issues are identified.


2020 ◽  
Vol 10 (16) ◽  
pp. 5556
Author(s):  
Torsten Fischer ◽  
Bernd Kuhn ◽  
Detlef Rieck ◽  
Axel Schulz ◽  
Ralf Trieglaff ◽  
...  

Strong efforts are made internationally to optimize the process control of laser additive manufacturing processes. For this purpose, advanced detectors and monitoring software are being developed to control the quality of production. However, commercial suppliers of metal powders and part manufacturers are essentially focused on well-established materials. This article demonstrates the potential of optimized process control. Furthermore, we outline the development of a new high temperature structural steel, tailored to best utilize the advantages of additive manufacturing techniques. In this context, the impact of production-induced porosity on fatigue strength of austenitic 316L is presented. Additionally, we discuss the first conceptual results of a novel ferritic steel, named HiperFer (High Performance Ferrite), which was designed for increased fatigue strength. This ferritic, Laves phase-strengthened, stainless steel could be used for a wide range of structural components in power and (petro)chemical engineering at maximum temperatures ranging from about 580 to 650 °C. This material benefits from in situ heat treatment and counteracts process-related defects by “reactive” crack obstruction mechanisms, hampering both crack initiation and crack propagation. In this way, increased fatigue resistance and safety can be achieved.


2017 ◽  
Vol 737 ◽  
pp. 248-255 ◽  
Author(s):  
Tae Hee Kim ◽  
Dae Yeon Kim ◽  
Choong Sun Lim ◽  
Bong Kuk Seo

The preparation of high performance epoxy composites for industrial applications has been extensively researched. In this report, we study the change in physical properties and reaction kinetics between epoxy resin and curing agents of similar geometry. For the experiments, celloxide 2021P, an epoxy resin having low viscosity, was blended with three different curing agents: methylhexahydropthalic acid, methyltetrahydropthalic acid, and 5-norbornene-2, 3-dicarboxylic anhydride. The amount of 1, 2-dimethylimidazole catalyst was controlled, and the highest heat flow temperature (Tpeak) was observed at around 145 °C. The impact on reaction kinetics relative to the change in heating rate was studied with differential scanning calorimetry (DSC) for each of the curing agents. The glass transition temperature (Tg) of each composition was measured with a second DSC cycle. The prepared epoxy compositions were thermally cured in a metallic mold to provide pure epoxy resins without fillers. Finally, the flexural strengths of these resins were compared to each other. The authors believe that insights into choosing an appropriate epoxy binder are useful when it comes to the overall preparation of high performance polymer composites.


Sign in / Sign up

Export Citation Format

Share Document