scholarly journals Modelling of an induction heating process and resulting material distribution of a hybrid semi-finished product after impact extrusion

2021 ◽  
Author(s):  
Bernd-Arno Behrens ◽  
Hendrik Wester ◽  
Stefan Schäfer ◽  
Christoph Büdenbender

Multi-material solutions offer benefits, as they, in contrary to conventional monolithic parts, are customised hybrid components with properties that optimally fit the application locally. Adapted components offer the possibility to use high strength material in areas where external loads require it and substitute them by lightweight material in the other areas. The presented study describes the manufacturing of a hybrid shaft along the process chain Tailored Forming, which uses serial pre-joined semi-finished products in the forming stage. Subject of this study is the numerical modelling of the heating process by induction heating of a hybrid semi-finished product and the resulting material distribution after the impact extrusion process. For this endeavour, a numerical model of an inhomogeneous induction heating process was developed. The main challenge is to determine the boundary conditions such as current intensity acting in the induction coil and the electromagnetic properties of the used material. The current intensity was measured by a Rogowski coil during experimental heating tests. The relative magnetic permeability was modelled as a function of temperature using the method of Zedler. The results show the importance of using a relative magnetic permeability as a function of temperature to guarantee a high quality of the numerical model. Subsequently, the model was applied to the heating of the hybrid semi-finished product consisting of a steel and aluminium alloy. By using inductive heating and thus a resulting inhomogeneous temperature field, good agreement of the material distribution between experiment and simulation could be achieved after the forming process.

2013 ◽  
Vol 664 ◽  
pp. 496-503
Author(s):  
Noureddine Barka ◽  
Abderrazak El Ouafi ◽  
Philippe Bocher ◽  
Jean Brousseau

As the induction heating is very fast, it is reasonable to assume that the material properties are different from those measured under thermodynamic equilibrium conditions. For this reason, this study attempts to measure the effect of material properties variations on the surface temperature using the 2D axisymmetric model. The results show that the relative magnetic permeability is the property that most significantly influences surface temperatures and the hardness profile. The effects of specific heat and electrical conductivity are rather low, while the thermal conductivity has a negligible effect on the model developed. Moreover, the variation ofaustenitizingtemperature of margins has limited effects on the developed model. Therefore, the use of material properties at thermodynamic equilibrium was sufficient to establish models able to predict trends.


2012 ◽  
Vol 28 (02) ◽  
pp. 73-81
Author(s):  
Xue-biao Zhang ◽  
Yu-long Yang ◽  
Yu-jun Liu

In shipyards, hull curved plate formation is an important stage with respect to productivity and accuracy control of curved plates. Because the power and its distribution of induction heat source are easier to control and reproduce, induction heating is expected to be applied in the line heating process. This paper studies the moveable induction heating process of steel plate and develops a numerical model of electromagneticthermal coupling analysis and the numerical results consistent with the experimental results. The numerical model is used to analyze the temperature changing rules and the influences on plate temperature field of heating speed of moveable induction heating of steel plate, and the following conclusions are drawn. First, the process of moveable induction heating of steel plate can be divided into three phases of initial state, quasi-steady state, and end state. The temperature difference between the top and bottom surfaces of the steel plate at the initial state is the biggest; it remains unchanged at the quasi-steady state and it is the smallest at the end state. Second, obvious end effect occurs when the edges of the steel plate are heated by the inductor, which causes a decrease in temperature difference between the top and bottom surfaces of the steel plate that is unfavorable for formation of pillow shape plates. Third, with the increase of heating speed, the temperature difference between the top and bottom surfaces of the steel plate increases gradually.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1860
Author(s):  
Jerzy Zgraja ◽  
Grzegorz Lisowski ◽  
Jacek Kucharski

Induction heating is one of the most effective methods of energy conversion from the electrical to thermal form, used in diverse industrial processes. In this paper the resonance generators for induction heating are considered for which the equivalent load resistance has a strong impact on the ability of the system to use optimally the potentially available power. The equivalent load resistance varies, depending on the type of induction heating system (IHS) and during the heating process itself. This paper presents an induction heat generator in which an L-LC resonance system (called the LLC system) plays an active role in energy matching. The LLC resonance system is analyzed from the point of view of both the functional dependencies describing the influence of frequency on the load resistance transformation, and the impact of the LLC setup on the sensitivity of the generator to changes in the charge resistance caused by heating. The procedure for initial selection of the resonance system parameters is presented. We also consider the possibility of automatic correction by the generator of the LLC system parameters, in order to limit the effect of changes in the IHS parameters on the degree of source–load energy matching. We describe cascade power control algorithms based on the use of Field Programmable Gate Array (FPGA) systems, which enable the optimal control of energy matching. Our study is based on theoretical considerations, numerical simulations, and experimental verification using a 30 kW model.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 535 ◽  
Author(s):  
Cordelia Zimmerer ◽  
Catalina Mejia ◽  
Toni Utech ◽  
Kerstin Arnhold ◽  
Andreas Janke ◽  
...  

Induction heating is efficient, precise, cost-effective, and clean. The heating process is coupled to an electrically conducting material, usually a metal. As most polymers are dielectric and non-conducting, induction heating is not applicable. In order to transfer energy from an electromagnetic field into polymer induction structures, conducting materials or materials that absorb the radiation are required. This report gives a brief overview of induction heating processes used in polymer technology. In contrast to metals, most polymer materials are not affected by electromagnetic fields. However, an unwanted temperature rise of the polymer can occur when a radio frequency field is applied. The now available high-field magnetic sources provide a new platform for induction heating at very low frequencies, avoiding unwanted thermal effects within the material. Using polycarbonate and octadecylamine as an example, it is demonstrated that induction heating performed by a magnetic-field pulse with a maximum flux density of 59 T can be used to initiate chemical reactions. A 50 nm thick Ag loop, with a mean diameter of 7 mm, placed in the polymer-polymer interface acts as susceptor and a resistive heating element. The formation of urethane as a linker compound was examined by infrared spectroscopic imaging and differential scanning calorimetry.


2021 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Björn Beckschwarte ◽  
Lasse Langstädtler ◽  
Christian Schenck ◽  
Marius Herrmann ◽  
Bernd Kuhfuss

In electromagnetic forming of thin sheet metal, the die is located within the effective range of the electromagnetic wave. Correspondingly, a current is induced not only in the sheet metal, but also in the die. Like the current in the workpiece, also the current in the die interacts with the electromagnetic wave, resulting in Lorentz forces and changes of the electromagnetic field. With the aim to study the influence of different electromagnetic die properties in terms of specific electric resistance and relative magnetic permeability, electromagnetic simulations were carried out. A change in the resulting forming forces in the sheet metals was determined. To confirm the simulation results, electromagnetic forming and embossing tests were carried out with the corresponding die materials. The results from simulation and experiment were in good agreement.


2016 ◽  
Vol 30 (1) ◽  
pp. 67-87 ◽  
Author(s):  
Danilo Mattheß ◽  
Dirk Landgrebe ◽  
Welf-Guntram Drossel

This article deals with an experimental and numerical study of the inductive heating of glass fibre (GF)-reinforced thermoplastics with susceptors made of stainless steel that are embedded in them. The objective of this article is to examine the links between individual process and system parameters and the heating behaviour of fibre-reinforced plastics. Two different susceptor designs were tested in relation to their heating capability. Furthermore, it was possible to experimentally study the dependency of the space between the specimens and inductors and therefore the impact of the generator output of the induction system and inductor attachments differing in their geometric shapes in terms of heating. Moreover, it was possible to use numerical simulation to examine the heating behaviour at different frequencies. These findings indicate that it is possible to heat GF-reinforced semi-finished products by fibre-shaped susceptors. Finally, it was possible to demonstrate that the heating process can be designed by means of the frequency of the induction system and directly controlled using the generator output.


Author(s):  
Xuebiao Zhang ◽  
Cheng Chen ◽  
Yujun Liu

In shipyard, triangle heating technology with irregular multi-heating paths and highly concentrated heat input is used to form a curved plate, especially a concave type plate. Compared with line heating process with simple line segment path, its main purpose is to get a bigger contraction deformation at the plate edge. Hence, triangle heating technology is important for most shipyards to increase hull-forming productivity and study the automation. This paper focuses on the moveable triangle induction heating technology. An electromagnetic coupling finite element model is built to simulate the moveable triangle induction heating process and reveal the temperature characteristics and deformation behavior. The results of the simulation are compared with those obtained from experiments and show good agreement. It demonstrates that the numerical model used in this study is effective for simulating triangle heating for the steel plate forming process in shipbuilding. With the numerical model, the paper further investigates the effect of heating parameters on temperature and shrinkage deformation. These are traced here with a modified mechanical model whose results are in accord with the numerical results. This modified model can be applied to predict the edge shrinkage and explain the effect of heating parameters on transverse shrinkage.


Author(s):  
Tianxing Zhu ◽  
Xuekun Li ◽  
Feng Li ◽  
Yiming (Kevin) Rong

Induction heating is frequently used in the metalworking industry to heat metals for hardening, soldering, brazing, tempering and annealing. Due to its complexity, the using of simulation to analyze the induction heating process could become very advantageous both in design and economic aspects. In this paper, an analytical model is established using commercial package Cedrat Flux® 10.3, and the model is verified by the experiments. After the establishment of analytical model, an analysis on the effect of workpiece magnetic permeability to the modeling was conducted.


Sign in / Sign up

Export Citation Format

Share Document