scholarly journals Modulating Electronic Properties of Dinitrosoarene Polymers

Author(s):  
Lujo Matasović ◽  
Barbara Panić ◽  
Matej Bubaš ◽  
Hrvoj Vančik ◽  
Ivana Biljan ◽  
...  

The possibilities for tuning of electronic, transport, and optical properties of the linear dinitrosobenzene polymer (1) are explored. The band gap (Eg) and optical spectrum of 1 are calculated using both GW-BSE corrected for zero-point vibrations and hybrid TD-DFT, with the former method predicting a value (2.41 eV) in excellent agreement with diffuse reflectance spectroscopy measurements (2.39 eV). GW-BSE is also used to evaluate the effects of solid-state packing, while comprehensive TD-DFT calculations are employed to study the effects of intra-polymer torsion, gold surface adsorption, substitution, and changes in the aromatic core of 1. Torsion is found to be an important factor in determining Eg and transport properties, and a strong effect of the environment on the exciton binding energies is identified. Extending the conjugation in the aromatic core is found to enhance transport properties and narrow Eg, identifying future synthetic targets. Atomic force microscopy and spectroscopic ellipsometry are used to study 1 adsorbed to a (111) gold surface (1@Au), with the latter method showing a significant narrowing of the band gap to 0.68 eV, in good agreement with TD-DFT predictions.

2021 ◽  
Author(s):  
Lujo Matasović ◽  
Barbara Panić ◽  
Matej Bubaš ◽  
Hrvoj Vančik ◽  
Ivana Biljan ◽  
...  

We present a comprehensive analysis on how the electronic structure and the optical properties of an organic polymer can be modulated, based on the example of the dinitrosobenzene polymer (1). Using a combination of computational and experimental tools, we explore the effects of solid-state packing, backbone torsion, surface adsorption, the conjugation in the aromatic core, and substituents. The band gap (Eg) and optical spectrum of 1 are calculated using both GW-BSE with zero-gap renormalization (ZGR) and hybrid TD-DFT, with the former method predicting a value (2.41 eV) in excellent agreement with our diffuse reflectance spectroscopy measurements (2.39 eV). Using GW-BSE-ZGR, changes occurring upon solidstate packing are separated into a contribution arising from (i) the change in the torsional angle and (ii) the change in the screened Coulombic interaction, which strongly effects the exciton binding energies. Comprehensive hybrid TD-DFT calculations find that the effects of substituents on Eg and on transport properties can mostly be explained through changes in the torsional angle, and predict a linear dependence between it and Eg. Extending the conjugation in the aromatic core is found to enhance transport properties and narrow Eg, identifying future synthetic targets. Atomic force microscopy and spectroscopic ellipsometry are used to study 1 adsorbed to a (111) gold surface (1@Au), with the latter method showing a significant narrowing of the band gap to 0.68 eV, in good agreement with TD-DFT predictions.


Nano Research ◽  
2021 ◽  
Author(s):  
Xiushang Xu ◽  
Marco Di Giovannantonio ◽  
José I. Urgel ◽  
Carlo A. Pignedoli ◽  
Pascal Ruffieux ◽  
...  

AbstractGraphene nanoribbons (GNRs) have potential for applications in electronic devices. A key issue, thereby, is the fine-tuning of their electronic characteristics, which can be achieved through subtle structural modifications. These are not limited to the conventional armchair, zigzag, and cove edges, but also possible through incorporation of non-hexagonal rings. On-surface synthesis enables the fabrication and visualization of GNRs with atomically precise chemical structures, but strategies for the incorporation of non-hexagonal rings have been underexplored. Herein, we describe the on-surface synthesis of armchair-edged GNRs with incorporated five-membered rings through the C-H activation and cyclization of benzylic methyl groups. Ortho-Tolyl-substituted dibromobianthryl was employed as the precursor monomer, and visualization of the resulting structures after annealing at 300 °C on a gold surface by high-resolution noncontact atomic force microscopy clearly revealed the formation of methylene-bridged pentagons at the GNR edges. These persisted after annealing at 340 °C, along with a few fully conjugated pentagons having singly-hydrogenated apexes. The benzylic methyl groups could also migrate or cleave-off, resulting in defects lacking the five-membered rings. Moreover, unexpected and unique structural rearrangements, including the formation of embedded heptagons, were observed. Despite the coexistence of different reaction pathways that hamper selective synthesis of a uniform structure, our results provide novel insights into on-surface reactions en route to functional, non-benzenoid carbon nanomaterials.


2021 ◽  
Vol 63 (9) ◽  
pp. 1437
Author(s):  
А.С. Комолов ◽  
Э.Ф. Лазнева ◽  
Е.В. Жижин ◽  
Э.К. Алиджанов ◽  
Ю.Д. Лантух ◽  
...  

The morphology of organic semiconductor films of perylenetetracarboxylic acid dianhydride (PTCDA) and perylenetetracarboxylic acid dibenzyl-diimide (N, N`-DBPTCDI) formed by thermal vacuum deposition was studied by atomic force microscopy. It was shown that annealing of films at 420 K leads to rearrangement of their structure and crystallization. The optical absorption spectra of the films under study were used to estimate the optical band gap. The temperature dependence of the dark conductivity of PTCDA and N, N-DBPTCDI films before and after annealing (Т = 420 K) was established. The values of the activation energy of charge carrier traps are determined. The computer simulation of the density of localized states in the band gap of the films studied was carried out using the photoconductivity spectra in the constant photocurrent mode. Model photovoltaic cells based on PTCDA / СuPc and N, N-DBPTCDI / СuPc structures were formed. The kinetics of decay of the interfacial photo-voltage of the cells prepared was measured using pulsed light as an excitation source. On the basis of the performed measurements, the charge carrier mobility values in the investigated semiconductor materials were estimated.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 370 ◽  
Author(s):  
Ruizeng Liu ◽  
Bin Pei ◽  
Zhicheng Liu ◽  
Yunwei Wang ◽  
Jialei Li ◽  
...  

Sulfidization is required in the amine flotation of smithsonite; however, the sulfidization mechanism of smithsonite is still not fully understood. In this work, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV–vis diffuse reflectance spectroscopy (UV–vis DRS) were used to characterize sulfidized and unsulfidized smithsonite. The XPS and UV–vis DRS analyses showed that smithsonite sulfidization is a transformation of ZnCO3 to ZnS on the smithsonite surfaces. However, this transformation is localized, resulting in the coexistence of ZnCO3 and ZnS or in the formation of ZnS island structures on the sulfidized smithsonite surfaces. AFM height imaging showed that sulfidization can substantially change the surface morphology of smithsonite; in addition, AFM phase imaging demonstrated that sulfidization occurs locally on the smithsonite surfaces. Based on our findings, it can be concluded that smithsonite sulfidization is clearly a heterogeneous solid–liquid reaction in which the solid product attaches at the surfaces of unreacted smithsonite. Smithsonite sulfidization involves heterogeneous nucleation and growth of ZnS nuclei. Moreover, the ZnS might nucleate and grow preferentially in the regions with high reactivity, which might account for the formation of ZnS island structures. In addition, sphalerite-structured ZnS is more likely to be the sulfidization product of smithsonite under flotation-relevantconditions, as also demonstrated by the results of our UV–vis DRS analyses. The results of this study can provide deeper insights into the sulfidization mechanism of smithsonite.


2011 ◽  
Vol 25 (29) ◽  
pp. 3941-3949 ◽  
Author(s):  
P. K. BARHAI ◽  
RISHI SHARMA ◽  
B. B. NAYAK

Wide band gap diamond-like carbon films (DLCs) are deposited on silicon (1 0 0) substrates using capacitive coupled radio frequency plasma-enhanced chemical vapor deposition (R.F. PECVD) technique. The deposition of films is carried out at a constant pressure (~5×10-2 mbar ) using acetylene precursor diluted with argon at constant R.F. power of 5 W. Raman spectroscopy of deposited DLC films shows broad G peak near 1550 cm-1 and a weak D peak near 1320 cm1. FTIR plot of DLC films shows a peak near 2900 cm-1 corresponding to C–H stretching mode and peaks below 2000 cm-1 corresponding to C–C modes and C–H bending modes. Maximum hardness of the deposited films is found to be ~15 GPa. Band gap of the DLC films is ~3.5 eV. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) pictures show that the deposited films are amorphous. Deposition mechanism of wide band gap DLC film is explained on the basis of subplantation model.


2007 ◽  
Vol 560 ◽  
pp. 41-46 ◽  
Author(s):  
Claus Guerra-Amaro ◽  
M. Hinojosa ◽  
E. Reyes-Melo ◽  
V. González

In the present work we discuss the self-affine properties of the fracture surfaces of sodalime glass obtained under quasi-static conditions. The fracture surfaces are generated using a threepoint bending system in normal room conditions and under high humidity conditions. The surfaces were recorded both by Scanning Electron Microscopy and Atomic Force Microscopy, and their selfaffine properties are characterized using the Variable Bandwidth method. For both conditions it is observed that the major part of the fracture surface is occupied by the mirror zone. On the other hand, the self-affine analysis reveals that for both conditions the roughness exponent has values centred at around 0.58 with moderate dispersion, in agreement with previous results. Our findings support the hypothesis of the existence of a characteristic roughness exponent for quasi-static fracture with a value that is significantly lower than the value of 0.8 reported for rapid fracture conditions.


2008 ◽  
Vol 1119 ◽  
Author(s):  
A Ghosh ◽  
R K Gupta ◽  
P K Kahol ◽  
K Ghosh

AbstractThin films of Co-doped In2O3 diluted magnetic semiconductor have been grown on c-plane sapphire single crystals using pulsed laser deposition technique. Different characterizations such as x-ray diffraction, atomic force microscopy, and magneto-transport have been carried out to study the effect of growth temperature on structural, electrical, and magneto-transport properties of these films. Crystalinity of the films increases with the growth temperature. The films grown at high temperature have preferred orientation along (222) direction, while films grown at low temperature behave more like to nanocrystaline. It is observed that electrical properties of the films strongly depend on growth temperature. The resistivity and magnetoresistance of the films decreases with increase in growth temperature. On the other hand, mobility of the films increases with increase in growth temperature. This could be due to improvement in crystalinity of the films.


Sign in / Sign up

Export Citation Format

Share Document