scholarly journals Functional Ionic Porous Frameworks Based on Triaminoguanidinium for CO2 Conversion and Combating Microbes

Author(s):  
MD. Waseem Hussain ◽  
Vipin Bhardwaj ◽  
ARKAPRABHA GIRI ◽  
Ajit Chande ◽  
Abhijit Patra

Porous organic frameworks (POFs) with heteroatom rich ionic backbone have emerged as advanced materials for catalysis, charge-specific molecular separation and antibacterial activity. The loading of metal ions further enhances Lewis acidity augmenting the activity associated with the frameworks. Metal-loaded ionic POFs however often suffer from physicochemical instability, limiting their scope for diverse applications. Herein, we report the fabrication of triaminoguanidinium-based ionic POFs through Schiff base condensation in a cost-effective and scalable manner. The resultant N-rich ionic frameworks facilitate selective CO<sub>2</sub> uptake and provide high metal (ZnO, 57.3 ± 1.2%) loading capacity. The hierarchically mesoporous ZnO-rich metalated frameworks (Zn/POFs) show remarkable catalytic activity in the cycloaddition of CO<sub>2</sub> and epoxides into cyclic organic carbonates under solvent-free condition with high catalyst recyclability. In addition, both ionic POFs and Zn/POFs exhibit robust antibacterial (Gram-positive, <i>S. aureus</i> and Gram-negative, <i>E. coli</i>) and antiviral activity targeting HIV and VSV-G enveloped lentiviral particles. The enhanced catalytic, as well as broad-spectrum antimicrobial activity, are likely due to the synergistic effect of triaminoguanidinium ions and ZnO infused with the frameworks. We thus establish triaminoguanidinium-based POFs and Zn/POFs as a new class of multifunctional materials for environmental remediation and biomedical applications.

2019 ◽  
Author(s):  
MD. Waseem Hussain ◽  
Vipin Bhardwaj ◽  
ARKAPRABHA GIRI ◽  
Ajit Chande ◽  
Abhijit Patra

Porous organic frameworks (POFs) with heteroatom rich ionic backbone have emerged as advanced materials for catalysis, charge-specific molecular separation and antibacterial activity. The loading of metal ions further enhances Lewis acidity augmenting the activity associated with the frameworks. Metal-loaded ionic POFs however often suffer from physicochemical instability, limiting their scope for diverse applications. Herein, we report the fabrication of triaminoguanidinium-based ionic POFs through Schiff base condensation in a cost-effective and scalable manner. The resultant N-rich ionic frameworks facilitate selective CO<sub>2</sub> uptake and provide high metal (ZnO, 57.3 ± 1.2%) loading capacity. The hierarchically mesoporous ZnO-rich metalated frameworks (Zn/POFs) show remarkable catalytic activity in the cycloaddition of CO<sub>2</sub> and epoxides into cyclic organic carbonates under solvent-free condition with high catalyst recyclability. In addition, both ionic POFs and Zn/POFs exhibit robust antibacterial (Gram-positive, <i>S. aureus</i> and Gram-negative, <i>E. coli</i>) and antiviral activity targeting HIV and VSV-G enveloped lentiviral particles. The enhanced catalytic, as well as broad-spectrum antimicrobial activity, are likely due to the synergistic effect of triaminoguanidinium ions and ZnO infused with the frameworks. We thus establish triaminoguanidinium-based POFs and Zn/POFs as a new class of multifunctional materials for environmental remediation and biomedical applications.


2019 ◽  
Vol 25 (34) ◽  
pp. 3645-3663 ◽  
Author(s):  
Muhammad Ismail ◽  
Kalsoom Akhtar ◽  
M.I. Khan ◽  
Tahseen Kamal ◽  
Murad A. Khan ◽  
...  

: Water pollution due to waste effluents of the textile industry is seriously causing various health problems in humans. Water pollution with pathogenic bacteria, especially Escherichia coli (E. coli) and other microbes is due to the mixing of fecal material with drinking water, industrial and domestic sewage, pasture and agricultural runoff. Among the chemical pollutants, organic dyes due to toxic nature, are one of the major contaminants of industrial wastewater. Adequate sanitation services and drinking quality water would eliminate 200 million cases of diarrhea, which results in 2.1 million less deaths caused by diarrheal disease due to E. coli each year. Nanotechnology is an excellent platform as compared to conventional treatment methods of water treatment and remediation from microorganisms and organic dyes. In the current study, toxicity and carcinogenicity of the organic dyes have been studied as well as the remediation/inactivation of dyes and microorganism has been discussed. Remediation by biological, physical and chemical methods has been reviewed critically. A physical process like adsorption is cost-effective, but can’t degrade dyes. Biological methods were considered to be ecofriendly and cost-effective. Microbiological degradation of dyes is cost-effective, eco-friendly and alternative to the chemical reduction. Besides, certain enzymes especially horseradish peroxidase are used as versatile catalysts in a number of industrial processes. Moreover, this document has been prepared by gathering recent research works related to the dyes and microbial pollution elimination from water sources by using heterogeneous photocatalysts, metal nanoparticles catalysts, metal oxides and enzymes.


2020 ◽  
Vol 17 (5) ◽  
pp. 716-724
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Background: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. Methods: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. Results: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 μg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. Conclusion: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


2017 ◽  
Vol 6 (04) ◽  
pp. 5347 ◽  
Author(s):  
Omar B. Ahmed* ◽  
Anas S. Dablool

Several methods of Deoxyribonucleic acid (DNA) extraction have been applied to extract bacterial DNA. The amount and the quality of the DNA obtained for each one of those methods are variable. The study aimed to evaluate bacterial DNA extraction using conventional boiling method followed by alcohol precipitation. DNA extraction from Gram negative bacilli was extracted and precipitated using boiling method with further precipitation by ethanol. The extraction procedure performed using the boiling method resulted in high DNA yields for both E. coli and K. pneumoniae bacteria in (199.7 and 285.7μg/ml, respectively) which was close to control method (229.3 and 440.3μg/ml). It was concluded that after alcohol precipitation boiling procedure was easy, cost-effective, and applicable for high-yield quality of DNA in Gram-negative bacteria.


Author(s):  
Eric S Tvedte ◽  
Mark Gasser ◽  
Benjamin C Sparklin ◽  
Jane Michalski ◽  
Carl E Hjelmen ◽  
...  

Abstract The newest generation of DNA sequencing technology is highlighted by the ability to generate sequence reads hundreds of kilobases in length. Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) have pioneered competitive long read platforms, with more recent work focused on improving sequencing throughput and per-base accuracy. We used whole-genome sequencing data produced by three PacBio protocols (Sequel II CLR, Sequel II HiFi, RS II) and two ONT protocols (Rapid Sequencing and Ligation Sequencing) to compare assemblies of the bacteria Escherichia coli and the fruit fly Drosophila ananassae. In both organisms tested, Sequel II assemblies had the highest consensus accuracy, even after accounting for differences in sequencing throughput. ONT and PacBio CLR had the longest reads sequenced compared to PacBio RS II and HiFi, and genome contiguity was highest when assembling these datasets. ONT Rapid Sequencing libraries had the fewest chimeric reads in addition to superior quantification of E. coli plasmids versus ligation-based libraries. The quality of assemblies can be enhanced by adopting hybrid approaches using Illumina libraries for bacterial genome assembly or polishing eukaryotic genome assemblies, and an ONT-Illumina hybrid approach would be more cost-effective for many users. Genome-wide DNA methylation could be detected using both technologies, however ONT libraries enabled the identification of a broader range of known E. coli methyltransferase recognition motifs in addition to undocumented D. ananassae motifs. The ideal choice of long read technology may depend on several factors including the question or hypothesis under examination. No single technology outperformed others in all metrics examined.


1975 ◽  
Vol 12 (04) ◽  
pp. 405-416
Author(s):  
Salvadore J. Guarino
Keyword(s):  

In the late 1960's the expanded international search for petroleum imposed new and rigorous demands on the offshore supply vessel. These vessels entered a phase of their evolution which has resulted in a class of vessel proven to be remarkably versatile and cost effective. This paper reviews the history and development of the offshore supply boat and describes the features and capabilities of these vessels which the author believes will enable them to serve as a new class of naval auxiliary capable of multimission utilization.


2011 ◽  
Vol 356-360 ◽  
pp. 423-429
Author(s):  
Meng Ye ◽  
Jin Huang ◽  
Rui Chen ◽  
Qi Zhuang He

An elevated arsenic (As) content in groundwater imposes a great threat to people worldwide. Thus, developing new and cost-effective methods to remove As from groundwater and drinking water becomes a priority. Using Zero-Valent iron (ZVI) to remove As from water is a proven technology. In this study, ZVI modified SBA-15 mesoporous silicamolecular sieves (ZVI-SBA-15), was prepared, characterized, and used for removing arsenic from water. Wet impregnation, drying, and calcination steps led to iron inclusion within the mesopores. Iron oxide was reduced to ZVI by NaBH4, and the ZVI modified SBA-15 was obtained. Fourier-transform infrared spectroscopy confirmed the preparation process of the nitrate to oxide forms. The structure of the materials was confirmed by Powder X-ray diffraction. Its data indicated that the structure of ZVI-SBA-15 retained the host SBA-15 structure. Brunauer-Emmett-Teller analysis revealed a decrease in surface area and pore size, indicating ZVI-SBA-15 coating on the inner surfaces. Transmission electron micrographs also confirmed that modified SBA-15 retained the structure of the parent SBA-15 silica.It has a high uptake capability(more than 90 pecent) make it potentially attractive absorbent for the removal of arsenic from water.


2021 ◽  
Author(s):  
Mojgan Zendehdel ◽  
Fatemeh Tavakoli

Abstract A new class of catalyst has been prepared with sulfunic acid functionalized HY zeolite (HY-N-SO3H) and characterized by FESEM, TEM, FTIR, TGA, XRD and BET. The result show that the catalyst has the micro-meso structure without ordering in the mesophase. Then, two sets of organic reaction were examined to consider of catalytic activity. The micro-meso structure HY-N-SO3H was used as an acidic catalyst to synthesis of coumarins via Pechmann reaction and facile transformation of amines to formamides under solvent free condition. This catalyst was compared with NaY-N-SO3H and MCM-N-SO3H and pure porous material to consider of the effect of acidity and kind and size of porous in the catalyst. The significant advantages of HY-N-SO3H respect to other catalyst are short reaction times, high yields, pure products, mild conditions and easy workup. In addition, we report an original and environmentally friendly solvent-free procedures which reusability of catalyst makes this method nearly green and environmental friendly.


Sign in / Sign up

Export Citation Format

Share Document