scholarly journals Flooded by Success: On the Role of Electrode Wettability in CO2 Electrolyzers That Generate Liquid Products

Author(s):  
McLain Leonard ◽  
Michael Orella ◽  
Nick Aiello ◽  
Yuriy Román-Leshkov ◽  
Antoni Forner-Cuenca ◽  
...  

Economic operation of carbon dioxide (CO2) electrolyzers generating liquid products will likely require high reactant conversions and product concentrations, conditions anticipated to challenge existing gas diffusion electrodes (GDEs). Notably, electrode wettability will increase as lower surface tension products (e.g., formic acid, alcohols) are introduced into electrolyte streams potentially leading to flooding. To understand the hydraulically stable operating envelopes in mixed aqueous-organic liquid domains, we connect intrinsic electrode wettability descriptors to operating parameters such as electrolyte flow rate and current. We first measure contact angles of water-organic dilutions on polytetrafluoroethylene (PTFE) and graphite surfaces as planar analogues for GDE components. We then use material balances around the reactive gas-liquid interface to calculate product mass fractions as functions of water sweep rate and current. Product composition maps visualize the extent to which changes in cell performance influence capillary pressure, a determinant of GDE saturation. Analyses suggest that formic acid mixtures pose little risk for GDE flooding across a wide range of conditions, but effluents enriched with less than 30% alcohol by mass may cause flooding. This study reveals opportunities to integrate microstructural features and oleophobic surface treatments into GDEs to repel aqueous-organic mixtures and expand the window of stable operating conditions.<br>

2020 ◽  
Author(s):  
McLain Leonard ◽  
Michael Orella ◽  
Nick Aiello ◽  
Yuriy Román-Leshkov ◽  
Antoni Forner-Cuenca ◽  
...  

Economic operation of carbon dioxide (CO2) electrolyzers generating liquid products will likely require high reactant conversions and product concentrations, conditions anticipated to challenge existing gas diffusion electrodes (GDEs). Notably, electrode wettability will increase as lower surface tension products (e.g., formic acid, alcohols) are introduced into electrolyte streams potentially leading to flooding. To understand the hydraulically stable operating envelopes in mixed aqueous-organic liquid domains, we connect intrinsic electrode wettability descriptors to operating parameters such as electrolyte flow rate and current. We first measure contact angles of water-organic dilutions on polytetrafluoroethylene (PTFE) and graphite surfaces as planar analogues for GDE components. We then use material balances around the reactive gas-liquid interface to calculate product mass fractions as functions of water sweep rate and current. Product composition maps visualize the extent to which changes in cell performance influence capillary pressure, a determinant of GDE saturation. Analyses suggest that formic acid mixtures pose little risk for GDE flooding across a wide range of conditions, but effluents enriched with less than 30% alcohol by mass may cause flooding. This study reveals opportunities to integrate microstructural features and oleophobic surface treatments into GDEs to repel aqueous-organic mixtures and expand the window of stable operating conditions.<br>


2020 ◽  
Author(s):  
McLain Leonard ◽  
Michael Orella ◽  
Nick Aiello ◽  
Yuriy Román-Leshkov ◽  
Antoni Forner-Cuenca ◽  
...  

The economic operation of carbon dioxide (CO2) electrolyzers generating liquid products will likely require high reactant conversions and high product concentrations, conditions anticipated to challenge existing gas diffusion electrodes (GDEs). Notably, electrode wettability will increase as lower surface tension products (e.g., formic acid, methanol, ethanol, and 1-propanol) are introduced into flowing electrolyte streams potentially leading to flooding. To better understand the hydraulically stable electrolyzer operating envelopes in mixed aqueous-organic liquid domains, we connect intrinsic porous electrode wettability descriptors to system operating parameters such as electrolyte flow rate and applied current. Specifically, we first measure contact angles of various water-organic dilutions on polytetrafluoroethylene (PTFE) and graphite surfaces as ex situ planar analogues for the major GDE components. We then use material balances around the reactive gas-liquid interface, to calculate product mass fractions as a function of liquid water sweep rate (water source and diluent) and the total current. Product composition maps enable visualization of the extent to which changes in cell performance can lead to changes in capillary pressure, a crucial determinant of GDE saturation. These analyses reveal that formic acid product mixtures pose little risk for GDE flooding across a wide range of flow rate and current combinations, but that effluents enriched with less than 30% alcohols content by mass may cause flooding. This study provides initial guidance into estimating flooding conditions for PTFE-based GDEs in contact with organic-enriched streams and indicates opportunities for oleophobic surface treatments that repel aqueous and organic liquids, expanding regions of stable operation<br>


2020 ◽  
Author(s):  
McLain Leonard ◽  
Michael Orella ◽  
Nick Aiello ◽  
Antoni Forner-Cuenca ◽  
Yuriy Román-Leshkov ◽  
...  

The economic operation of carbon dioxide (CO2) electrolyzers generating liquid products will likely require high reactant conversions and high product concentrations, conditions anticipated to challenge existing gas diffusion electrodes (GDEs). Notably, electrode wettability will increase as lower surface tension products (e.g., formic acid, methanol, ethanol, and 1-propanol) are introduced into flowing electrolyte streams potentially leading to flooding. To better understand the hydraulically stable electrolyzer operating envelopes in mixed aqueous-organic liquid domains, we connect intrinsic porous electrode wettability descriptors to system operating parameters such as electrolyte flow rate and applied current. Specifically, we first measure contact angles of various water-organic dilutions on polytetrafluoroethylene (PTFE) and graphite surfaces as ex situ planar analogues for the major GDE components. We then use material balances around the reactive gas-liquid interface, to calculate product mass fractions as a function of liquid water sweep rate (water source and diluent) and the total current. Product composition maps enable visualization of the extent to which changes in cell performance can lead to changes in capillary pressure, a crucial determinant of GDE saturation. These analyses reveal that formic acid product mixtures pose little risk for GDE flooding across a wide range of flow rate and current combinations, but that effluents enriched with less than 30% alcohols content by mass may cause flooding. This study provides initial guidance into estimating flooding conditions for PTFE-based GDEs in contact with organic-enriched streams and indicates opportunities for oleophobic surface treatments that repel aqueous and organic liquids, expanding regions of stable operation<br>


Author(s):  
Desheng Zhang

The primary goal of this work focuses on the cavitating vortices in the tip region of an axial-flow pump with 3 and 4 blades mainly based on the high-speed imaging experiments, with special attention on the trajectory and dynamics of a large-scale cavitation structure. The hydraulic and cavitation performance between two impellers were compared, and it can be found that the model with 4 blades has a relative wide range of stable operating conditions as well as the better anti-cavitation ability. By the analysis of the cavitation curves, it confirms that the highly unsteady tip cavitation cloud near the blade trailing edge should be responsible for the severe degradation of the performance. According to the detailed study on the cavitation evolution in the two impellers, it is observed that the trajectory of tip cavitating vortices for different flow rates seems very similar determined by the operating conditions. However, the dynamics varies significantly, which is associated with the blade loading and flow passage width.


Author(s):  
Q. G. Yan ◽  
H. Toghiani

The cold-start behavior and the effect of subzero temperatures on fuel cell performance were studied using a 25-cm2 PEMFC. The fuel cell system was housed in an environmental chamber that allowed the system to be subjected to temperatures ranging from sub-freezing to those encountered during normal operation. Fuel cell cold-start was investigated under a wide range of operating conditions. The cold-start measurements showed that the cell was capable of starting operation at −5 °C without irreversible performance loss when the cell was initially dry. The fuel cell was also able to operate at low environmental temperatures, down to −15 °C. However, irreversible performance losses were found if the cell cathode temperature fell below −5 °C during operation. Freezing of the water generated by fuel cell operation damaged fuel cell internal components. Several low temperature failure cases were investigated in PEM fuel cells that underwent sub-zero start and operation from −20 °C. Cell components were removed from the fuel cells and analyzed with scanning electron microscopy (SEM). Significant damage to the MEA and backing layer was observed in these components after operation below −5 °C. Catalyst layer delamination from both the membrane and the gas diffusion layer (GDL) was observed, as were cracks in the membrane, leading to hydrogen crossover. The membrane surface became rough and cracked and pinhole formation was observed in the membrane after operation at subzero temperatures. Some minor damage was observed to the backing layer coating Teflon and binder structure due to ice formation during operation.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


2021 ◽  
Vol 13 (15) ◽  
pp. 8620
Author(s):  
Sanaz Salehi ◽  
Kourosh Abdollahi ◽  
Reza Panahi ◽  
Nejat Rahmanian ◽  
Mozaffar Shakeri ◽  
...  

Phenol and its derivatives are hazardous, teratogenic and mutagenic, and have gained significant attention in recent years due to their high toxicity even at low concentrations. Phenolic compounds appear in petroleum refinery wastewater from several sources, such as the neutralized spent caustic waste streams, the tank water drain, the desalter effluent and the production unit. Therefore, effective treatments of such wastewaters are crucial. Conventional techniques used to treat these wastewaters pose several drawbacks, such as incomplete or low efficient removal of phenols. Recently, biocatalysts have attracted much attention for the sustainable and effective removal of toxic chemicals like phenols from wastewaters. The advantages of biocatalytic processes over the conventional treatment methods are their ability to operate over a wide range of operating conditions, low consumption of oxidants, simpler process control, and no delays or shock loading effects associated with the start-up/shutdown of the plant. Among different biocatalysts, oxidoreductases (i.e., tyrosinase, laccase and horseradish peroxidase) are known as green catalysts with massive potentialities to sustainably tackle phenolic contaminants of high concerns. Such enzymes mainly catalyze the o-hydroxylation of a broad spectrum of environmentally related contaminants into their corresponding o-diphenols. This review covers the latest advancement regarding the exploitation of these enzymes for sustainable oxidation of phenolic compounds in wastewater, and suggests a way forward.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 482
Author(s):  
Hilmar Guzmán ◽  
Federica Zammillo ◽  
Daniela Roldán ◽  
Camilla Galletti ◽  
Nunzio Russo ◽  
...  

Electrochemical CO2 reduction is a promising carbon capture and utilisation technology. Herein, a continuous flow gas diffusion electrode (GDE)-cell configuration has been studied to convert CO2 via electrochemical reduction under atmospheric conditions. To this purpose, Cu-based electrocatalysts immobilised on a porous and conductive GDE have been tested. Many system variables have been evaluated to find the most promising conditions able to lead to increased production of CO2 reduction liquid products, specifically: applied potentials, catalyst loading, Nafion content, KHCO3 electrolyte concentration, and the presence of metal oxides, like ZnO or/and Al2O3. In particular, the CO productivity increased at the lowest Nafion content of 15%, leading to syngas with an H2/CO ratio of ~1. Meanwhile, at the highest Nafion content (45%), C2+ products formation has been increased, and the CO selectivity has been decreased by 80%. The reported results revealed that the liquid crossover through the GDE highly impacts CO2 diffusion to the catalyst active sites, thus reducing the CO2 conversion efficiency. Through mathematical modelling, it has been confirmed that the increase of the local pH, coupled to the electrode-wetting, promotes the formation of bicarbonate species that deactivate the catalysts surface, hindering the mechanisms for the C2+ liquid products generation. These results want to shine the spotlight on kinetics and transport limitations, shifting the focus from catalytic activity of materials to other involved factors.


Sign in / Sign up

Export Citation Format

Share Document