scholarly journals The Environmental and Economic Viability of Chitosan Production in Guayas-Ecuador: A Robust Investment and Life Cycle Analysis

Author(s):  
Ariel Riofrio ◽  
Tania Alcivar ◽  
Haci Baykara

Ecuador is a country where shrimp production is one of its primary industries. It generates annually about 72 thousand tons of wastes in the form of shrimp shells. Therefore, using this waste as a raw material resource to produce chitosan, a biopolymer, is established. An environmental and economic performance study is carried out as a possible investment report; where a conceptual design of the process is defined, a financial viability report is obtained. An environmental impact report establishes the degree of harm to the environment. The economic viability study considered costs related to capital and operation for the processing of 5000 tons of shrimp shells each year. On the other hand, a life cycle assessment was performed to obtain the environmental impact for 1 kg of chitosan produce, where a cradle-to-gate approach was established. Results showed that this new industry has a net present value of 10.38 million USD, a rate of return of 67.31%, and a payback period of 0.7 years. Additionally, it was calculated that the environmental impact with a higher normalized value was the human non-carcinogenic toxicity. It is concluded that the production of chitosan in Guayas-Ecuador is economically viable, cost-competitive in the market, and it represents an industrial activity with no considerable environmental impacts.

2021 ◽  
Author(s):  
Ariel Riofrio ◽  
Tania Alcivar ◽  
Haci Baykara

Ecuador is a country where shrimp production is one of its primary industries. It generates annually about 72 thousand tons of wastes in the form of shrimp shells. Therefore, using this waste as a raw material resource to produce chitosan, a biopolymer, is established. An environmental and economic performance study is carried out as a possible investment report; where a conceptual design of the process is defined, a financial viability report is obtained. An environmental impact report establishes the degree of harm to the environment. The economic viability study considered costs related to capital and operation for the processing of 5000 tons of shrimp shells each year. On the other hand, a life cycle assessment was performed to obtain the environmental impact for 1 kg of chitosan produce, where a cradle-to-gate approach was established. Results showed that this new industry has a net present value of 10.38 million USD, a rate of return of 67.31%, and a payback period of 0.7 years. Additionally, it was calculated that the environmental impact with a higher normalized value was the human non-carcinogenic toxicity. It is concluded that the production of chitosan in Guayas-Ecuador is economically viable, cost-competitive in the market, and it represents an industrial activity with no considerable environmental impacts.


2019 ◽  
Vol 236 ◽  
pp. 117638
Author(s):  
Alessio Ilari ◽  
Daniele Duca ◽  
Giuseppe Toscano ◽  
Ester Foppa Pedretti

2018 ◽  
Vol 174 ◽  
pp. 01006 ◽  
Author(s):  
Břetislav Teplý ◽  
Tomáš Vymazal ◽  
Pavla Rovnaníková

Efficient sustainability management requires the use of tools which allow material, technological and construction variants to be quantified, measured or compared. These tools can be used as a powerful marketing aid and as support for the transition to “circular economy”. Life Cycle Assessment (LCA) procedures are also used, aside from other approaches. LCA is a method that evaluates the life cycle of a structure from the point of view of its impact on the environment. Consideration is given also to energy and raw material costs, as well as to environmental impact throughout the life cycle - e.g. due to emissions. The paper focuses on the quantification of sustainability connected with the use of various types of concrete with regard to their resistance to degradation. Sustainability coefficients are determined using information regarding service life and "eco-costs". The aim is to propose a suitable methodology which can simplify decision-making in the design and choice of concrete mixes from a wider perspective, i.e. not only with regard to load-bearing capacity or durability.


Author(s):  
Alma Delia Delia Román Gutiérrez ◽  
Juan Hernandez Avila ◽  
Antonia Karina Vargas M. ◽  
Eduardo Cerecedo Saenz ◽  
Eleazar Salinas-Rodríguez

Usually in the manufacture of beer by fermentation of barley, in both industrialized and developing countries significant amounts of organic solid waste are produced from barley straw. These possibly have an impact on the carbon footprint with an effect on global warming. According to this, it is important to reduce environmental impact of these solid residues, and an adequate way is the recycling using them as raw material for the elaboration of handmade paper. Therefore, it is required to manage this type of waste by analyzing the environmental impact, and thus be able to identify sustainable practices for the treatment of this food waste, evaluating its life cycle, which is a useful methodology to estimate said environmental impacts. It is because of this work shows the main results obtained using the life cycle analysis (LCA) methodology, to evaluate the possible environmental impacts during the waste treatment of a brewery located in the state of Hidalgo, Mexico. The residues evaluated were barley straw, malt residues and spent grain, and at the end, barley straw was selected to determine in detail its environmental impact and its reuse, the sheets analyzed presented a grammage that varies from 66 g/m2 and 143 g/m2, resistance to burst was 117 to 145 kpa, with a crystallinity of 34.4% to 37.1%.


2020 ◽  
Vol 12 (22) ◽  
pp. 9590
Author(s):  
Piernicola Masella ◽  
Incoronata Galasso

Growing energy needs and medium-term weakening of fossil energy reserves are driving forces towards the exploitation of alternative and renewable energy sources, such as biofuels from energy crops. In recent years, Camelina sativa (L.) Crantz has been rediscovered and is gaining popularity worldwide. The present work reports the results of a study on the life cycle, from cradle-to-gate, of C. sativa oil as a raw material for the production of biofuels in northern Italy, considering two scenarios, namely, the production of biodiesel (BD) and the extraction of pure vegetable oil (PVO). The functional unit was 1 megajoule of biofuel. A life cycle impact assessment (LCIA) was calculated according to the ILCD2011 procedure. Focusing on the global warming potential, the PVO scenario performs better than the BD scenario, with around 30 g CO2eq MJ−1. The net energy ratio (NER) exceeds unity for BD (approximately 1.4) or PVO (approximately 2.5). The same general trend was recorded for all calculated LCIA indicators; the common evidence is a generalized worse performance of the BD scenario, with indicators always scoring higher than the PVO. In particular, the two human toxicity indicators—carcinogenic and fresh water—eutrophication represent a significant difference, attributable to the refining process. Uncertainty and sensitivity analyses, respectively, underline the generalized importance of agricultural performances in the field and of allocation choices. Specifically, the importance of the grain yield and seed oil content in determining the environmental performance of the two scenarios was evident. As far as allocation is concerned, mass allocation provides the most favorable results, while on the other hand, the expansion of the system was the most penalizing alternative.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ana Jamile Damasceno Barbosa ◽  
Vitor Hugo de Paiva Santos ◽  
Priscilla Cavalcante de Araújo ◽  
Felipe Lucas de Medeiros ◽  
Letícia Yasmin da Silva Otaviano

PurposeThe paper aims to propose the development of an eco product to replace the traditional cotton swab that meets the expected needs, besides having a bias based on sustainability and economic viability.Design/methodology/approachThe applied nature article opted for an exploratory and descriptive study, with the objective of seeking a solution to a real problem: to reduce the environmental impact in the disposal of cotton swabs. To test this hypothesis, the exploratory stage evaluated the literature on the principles of eco design and environmental marketing to understand market viability and environmental impacts. The descriptive phase presented a comparative analysis between the original product and the proposed one, in terms of production processes and impacts of the product life cycle. Thus, an alternative product was conceived and validated applying the life cycle analysis (LCA).FindingsThe paper provides a comparative analysis between the eco product and the traditional product in order to validate the hypothesis that the new proposal reduces the environmental impact. It was found that both productive processes have similar impacts; however, the raw material of the proposed eco product demonstrated a significant reduction in the impact caused on the environment, considering cradle to cradle analysis.Originality/valueThis paper conceives an eco product as an alternative to traditional cotton swab, presenting an innovative potential in line with worldwide sustainability trends.


2021 ◽  
Vol 896 (1) ◽  
pp. 012050
Author(s):  
I P Sari ◽  
W Kuniawan ◽  
F L Sia

Abstract Tofu is one of the processed soybean foods that are very popular with Indonesian society. Despite the popularity of Tofu, Tofu production in Indonesia is generally small and medium, reaching 500 kg per day, as in the tofu factory in Semanan, West Jakarta. The purpose of this study is to analyze the environmental impact of tofu production in West Jakarta. The life cycle assessment (LCA) approach was used to achieve this goal with SimaPro software for impact calculations. This research applies the LCA cradle to gate, which consists of soybean cultivation, transportation, and tofu production processes. The environmental impacts of tofu production analyzed in this study include global warming, ozone depletion, acidification, and eutrophication. The impact analysis showed that the acquisition of soybeans, which consisted of soybean cultivation and transportation, had the most significant environmental impact with a global warming potential value of 0.882 kg CO2 eq out of a total of 0.978 CO2 eq for the whole process.


2019 ◽  
pp. 1-10
Author(s):  
María Elena Tavera-Cortés ◽  
Raúl Junior Sandoval-Gómez ◽  
Guillermo Alexis Vergel-Rangel

This article addresses the environmental impact in an enterprise of the agricultural sector through the analysis of the life cycle of the nopal brine elaboration, where the identified impact categories were identified for their evaluation as well as the opportunities for improvement. The methodology used followed a cradle to gate approach, from the nopal vegetable growing area in Milpa Alta, Mexico City, to the processing stage in the company; the functional unit was a ton of nopal in brine and the software used was SimaPro V8.5.2.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Femi K Owofadeju ◽  
Omeiza A Agbaje ◽  
Temitayo A Ewemoje

Life Cycle Assessment (LCA) is a decision support tool that can be used to evaluate the potential environmental impact of a product system. Environmental impact associated with the production of (0.0508×0.1524×3.6576) m lumber referred to as “2by6” in the primary wood industry was evaluated. This assessment is a cradle to gate system with boundaries spanning from the point of raw material extraction in Osun state, to transportation of the lumber product to wood market in Ibadan, Oyo state. The study compared four production scenarios by varying haulage distance and energy source during production at two sawmill facilities located in Ife and Ikire in Osun state. Data obtained from the production system were analysed using GaBi6 software to estimate and classify the emissions into five impact categories. Life Cycle Impact Assessment result (LCIA) showed that Acidification Potential (AP), Global Warming Potential (GWP) and Smog Potential (SP) were the most significant impact indicators observed in the four production scenarios. AP (2.883, 3.352, 3.483, 3.951) kg H+ mole-Equiv, GWP (13.25, 14.44, 15.45, 16.65) kg CO2-Equiv and SP (1.86, 2.15, 2.24, 2.53) kg O3-Equiv. Scenario 4 which involved a longer transportation distance and employed a diesel generator for the milling process showed the least environmental performance. Processes that contributed significant impact were wood waste disposal method employed and the secondary transportation processes during logging activities. In order to achieve a better production system, practices that encourage less waste generation and the use of renewable energy were recommended.Keywords— LCA, lumber production, environmental impact, wood waste


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1965 ◽  
Author(s):  
Alberto Quintana-Gallardo ◽  
Jesús Alba ◽  
Romina del Rey ◽  
José E. Crespo-Amorós ◽  
Ignacio Guillén-Guillamón

The ecological transition is a process the building industry is bound to undertake. This study aimed to develop new bio-based building partition typologies and to determine if they are suitable ecological alternatives to the conventional non-renewable ones used today. This work started with the development of a bio-based epoxy composite board and a waste-based sheep wool acoustic absorbent. Six different partition typologies combining conventional and bio-based materials were analyzed. A drywall partition composed of gypsum plasterboard and mineral wool was used as the baseline. First, a cradle-to-gate life cycle assessment was performed to compare their environmental impacts. Secondly, a mathematical simulation was performed to evaluate their airborne acoustic insulation. The LCA results show a 50% decrease in the amount of CO2 equivalent emitted when replacing plasterboard with bio-composite boards. The bio-composites lower the overall environmental impact by 40%. In the case of the acoustic absorbents, replacing the mineral wool with cellulose or sheep wool decreases the carbon emissions and the overall environmental impact of the partition from 4% and 6%, respectively. However, while the bio-based acoustic absorbents used offer good acoustic results, the bio-composites have a lower airborne acoustic insulation than conventional gypsum plasterboard.


Sign in / Sign up

Export Citation Format

Share Document