Structure and Properties of Electrochemically Synthesized Silver Nanoparticles in Aqueous Solution by High Resolution Techniques

Author(s):  
carla gasbarri ◽  
maurizio ronci ◽  
antonio aceto ◽  
tullio florio ◽  
Federica Barbieri ◽  
...  

<p>In this work high resolution techniques as transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta Potential measurements, and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF) have been employed to deeply investigate about silver nanoparticles (AgNPs) electrochemically synthesized and successfully applied in biological and chemical fields. Strong brightness, as well as the tendency to generate odd number nanoclusters, and the absence of free silver ion in solution have been observed. The chemical and physical properties of the AgNPs seem to be related to their peculiar oxidative state as suggested by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction analysis (XRPD). Finally, cytotoxicity of the investigated AgNPs has been tested by MTT assay.</p>

2021 ◽  
Author(s):  
carla gasbarri ◽  
maurizio ronci ◽  
antonio aceto ◽  
tullio florio ◽  
Federica Barbieri ◽  
...  

<p>In this work high resolution techniques as transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta Potential measurements, and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF) have been employed to deeply investigate about silver nanoparticles (AgNPs) electrochemically synthesized and successfully applied in biological and chemical fields. Strong brightness, as well as the tendency to generate odd number nanoclusters, and the absence of free silver ion in solution have been observed. The chemical and physical properties of the AgNPs seem to be related to their peculiar oxidative state as suggested by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction analysis (XRPD). Finally, cytotoxicity of the investigated AgNPs has been tested by MTT assay.</p>


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 395 ◽  
Author(s):  
Juan Carlos Martínez Espinosa ◽  
Raúl Carrera Cerritos ◽  
Maria Antonieta Ramírez Morales ◽  
Karla Paola Sánchez Guerrero ◽  
Rocio Alejandra Silva Contreras ◽  
...  

Metal nanoparticles are widely used in different areas such as biotechnology and biomedicine, for example in drug delivery, imaging and control of bacterial growth. The antimicrobial effect of silver has been identified as an alternative approach to the increasing bacterial resistance to antibiotics. Silver nanoparticles were synthesized by the green route using the Geranium extract as a reducing agent. The characterization was carried out by the techniques of UV-Vis spectrophotometry, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray emitted photoelectron spectroscopy (XPS) and X-ray diffraction. Nanoparticle diameters between 15 and 50 nm were obtained and the interplanar spaces calculated from the electron diffraction pattern corresponding to a mixture of silver with 4H and FCC structures. To determine the minimum inhibitory concentration of silver nanoparticles (AgNPs) on the Pseudomonas aeruginosa bacteria (ATCC-27853), different concentrations of colloidal solution 0.36, 0.18, 0.09 and 0.05 μg/mL were evaluated as a function of the incubation time, measuring the inhibition halo and colony forming unit (CFU) during 0, 2 and 4 h of incubation. The minimum inhibitory AgNPs concentration (MIC) is 0.36 μg/mL at 0 h while the concentration of 0.18 μg/mL presents a total inhibition of the bacterium after 2 h. For the rest of the dilutions, gradual inhibitions as a function of time were observed. We evaluate the antibacterial effect of silver nanoparticles obtained by a green methodology in Pseudomonas aeruginosa bacteria. Finally, the colloidal nanoparticle solution can be an antibacterial alternative for different biomedical approaches.


2010 ◽  
Vol 152-153 ◽  
pp. 1333-1336 ◽  
Author(s):  
Xu Pin Zhuang ◽  
Zheng Li ◽  
Wei Min Kang ◽  
Bo Wen Cheng

New chitosan/poly (vinyl alcohol) (PVA) nanofibers functionalized with silver nanoparticles were electrospun using solutions of PVA blended with silver nanoparticles-chitosan composites. The structure of the electrospun fibers were studied with the aid of scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results indicated that the electrospun fibers smoothly with 220 to 650 nm diameter, and the silver nanoparticles were successfully embed into the fibers which show high antibacterial activity against E.coli.


Author(s):  
AJI JOVITHA AT ◽  
DEIVASIGAMANI B

Objective: The present study attempted to synthesize AgNPs from mangrove bark Rhizophora mucronata and analyze characteristics. The synthesized AgNPs analyzed with UV–vis spectroscopy, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray (EDX) for confirming the nanoparticles. Methods: The dried R. mucronata bark was powdered and kept in at 55°C for 15 min in a water bath and cooled at room temperature to get the extract. The R. mucronata bark extract was treated with silver nitrate and kept overnight in the dark environment which will turn the solution to dark brown color. The silver nanoparticles were characterized using UV–visible absorption at room temperature. Further characterization was also done with X-ray diffraction, high-resolution transmission electron microscope measurements, and DLS analysis. Results: The synthesized AgNPs were analyzed with various analytical methods that revealed the abundant presence of silver nanoparticles. The UV–vis spectroscopy analysis exposed the surface plasmon resonance peak of 422 nm. High-resolution transmission electron microscopy (HRTEM) analysis indicated the size ranging from 10 nm to 200 nm in diameter and a spherical shaped poly dispersal of the particles. The energy-dispersive X-ray (EDX) and DLS also confirmed the presence of silver atoms. Conclusion: Silver nanoparticles of Rhizophora mucronata bark revealed a well-defined structure and may be used in antimicrobial function in further researches.


2021 ◽  
Vol 12 (4) ◽  
pp. 170-175
Author(s):  
M Mohan Varma ◽  
Indukuri Kinnera

During the past few years, silver nanoparticles became one amongst the foremost investigated and explored technology derived nanostructures, given the fact that nano silver primarily based materials established to possess attention-grabbing, challenging, and inspiring characteristics appropriate for numerous applications. Generation after generation, the postulates come back forth regarding properties of silver for the traditional Greeks cook from silver pots and the recent saying “born with silver spoon in his mouth” so show that ingestion with a silver spoon was renowned as uncontaminated. Silver has an excessive amount of contemporary industrial uses and is considered as a store of wealth. Silver nanoparticles are unit one amongst the foremost very important and interesting nano materials among many metals like nanoparticles. they need been urban as a complicated unit within the field of nanotechnology. This review predominately focused on advantages and synthesis of silver nanoparticles using physical, chemical, and biological ways. However, physical, and chemical methods are harmful and expensive however the biological technique is easy, rapid, non- noxious and ecofriendly. It additionally explains regarding mechanism of action, numerous characterization techniques as well as UV- Visible Spectroscopy, Localized Surface Plasmon Resonance (LSPR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR) spectroscopy, X- ray Photoelectron Spectroscopy (XPS), Dynamic Light Scattering (DLS), Zeta Potential and finally concluded with numerous applications.


2009 ◽  
Vol 24 (11) ◽  
pp. 3321-3330 ◽  
Author(s):  
Y.F. Han ◽  
T. Fu ◽  
Y.G. Shen

The effects of Al incorporation and post-deposition annealing on the structural properties of C-Al-N thin films prepared by reactive unbalanced dc-magnetron sputtering were investigated using x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). XPS studies demonstrated the presence of abundant Al-N bonds in addition to C-C and N-C bonds. At low incorporations of Al and N, the films were found to be essentially amorphous. By Raman and HRTEM, the formation of ∼5 nm fullerene-like carbon nitride (FL-CNx) nanostructures in an amorphous (C, CNx) matrix was evidenced with increasing Al content in the films. Crystalline improvement of FL-CNx nanostructures was seen, as well as the precipitation of ∼3–4 nm face centered cubic (fcc-) AlN nanograins by thermal annealing at 500 °C or above. Through these improvements, C-Al-N nanocomposite thin films were achieved. The effects of the incorporated Al and annealing on stabilizing fcc-AlN nanograins and FL-CNx nanostructures are elucidated and explained through the use of thermodynamic considerations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sauvik Raha ◽  
Dipyaman Mohanta ◽  
Md. Ahmaruzzaman

AbstractIn this work, a nanohybrid of CuO/Mn3O4/ZnO was generated through a simple hydrothermal based procedure. The CuO/Mn3O4/ZnO nanohybrid has been characterized using X-ray diffraction, transmission electron microscopy high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. UV–visible spectrophotometry and photoluminescence techniques allowed evaluation of optical properties that additionally suggested the prevalence of strong interfacial interaction between the three moieties of the nanohybrid and suppressed electron–hole recombination. The hybrid photocatalyst brought on ~ 97.02 ± 1.15% disintegration of rabeprazole when illuminated with visible light. The progress of the photodegradation was in conformity with pseudo-first order kinetic model and had a velocity constant of 0.07773 min−1. Additionally, ~ 84.45% of total organic carbon removal was achieved while chemical oxygen demand was reduced by ~ 73.01%. Using high resolution liquid chromatograph mass spectrometry technique, identification of the degraded products was made and accordingly the mechanistic route of the aforesaid degradation was proposed.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document