Probing the Substrate Promiscuity of Isopentenyl Phosphate Kinase as a Platform for Hemiterpene Analogue Production

Author(s):  
Sean Lund ◽  
Taylor Courtney ◽  
Gavin Williams

Isoprenoids are a large class of natural products with wide-ranging applications. Synthetic biology approaches to the manufacture of isoprenoids and their new-to-nature derivatives are limited due to the provision in Nature of just two hemiterpene building blocks for isoprenoid biosynthesis. To address this limitation, artificial chemo-enzymatic pathways such as the alcohol-dependent hemiterpene pathway (ADH) serve to leverage consecutive kinases to convert exogenous alcohols to pyrophosphates that could be coupled to downstream isoprenoid biosynthesis. To be successful, each kinase in this pathway should be permissive of a broad range of substrates. For the first time, we have probed the promiscuity of the second enzyme in the ADH pathway, isopentenyl phosphate kinase from Thermoplasma acidophilum, towards a broad range of acceptor monophosphates. Subsequently, we evaluate the suitability of this enzyme to provide non-natural pyrophosphates and provide a critical first step in characterizing the rate limiting steps in the artificial ADH pathway.<br>

2019 ◽  
Author(s):  
Sean Lund ◽  
Taylor Courtney ◽  
Gavin Williams

Isoprenoids are a large class of natural products with wide-ranging applications. Synthetic biology approaches to the manufacture of isoprenoids and their new-to-nature derivatives are limited due to the provision in Nature of just two hemiterpene building blocks for isoprenoid biosynthesis. To address this limitation, artificial chemo-enzymatic pathways such as the alcohol-dependent hemiterpene pathway (ADH) serve to leverage consecutive kinases to convert exogenous alcohols to pyrophosphates that could be coupled to downstream isoprenoid biosynthesis. To be successful, each kinase in this pathway should be permissive of a broad range of substrates. For the first time, we have probed the promiscuity of the second enzyme in the ADH pathway, isopentenyl phosphate kinase from Thermoplasma acidophilum, towards a broad range of acceptor monophosphates. Subsequently, we evaluate the suitability of this enzyme to provide non-natural pyrophosphates and provide a critical first step in characterizing the rate limiting steps in the artificial ADH pathway.<br>


2020 ◽  
Author(s):  
Chang-Sheng Wang ◽  
Sabrina Monaco ◽  
Anh Ngoc Thai ◽  
Md. Shafiqur Rahman ◽  
Chen Wang ◽  
...  

A catalytic system comprised of a cobalt-diphosphine complex and a Lewis acid (LA) such as AlMe3 has been found to promote hydrocarbofunctionalization reactions of alkynes with Lewis basic and electron-deficient substrates such as formamides, pyridones, pyridines, and azole derivatives through site-selective C-H activation. Compared with known Ni/LA catalytic system for analogous transformations, the present catalytic system not only feature convenient set up using inexpensive and bench-stable precatalyst and ligand such as Co(acac)3 and 1,3-bis(diphenylphosphino)propane (dppp), but also display distinct site-selectivity toward C-H activation of pyridone and pyridine derivatives. In particular, a completely C4-selective alkenylation of pyridine has been achieved for the first time. Mechanistic stidies including DFT calculations on the Co/Al-catalyzed addition of formamide to alkyne have suggested that the reaction involves cleavage of the carbamoyl C-H bond as the rate-limiting step, which proceeds through a ligand-to-ligand hydrogen transfer (LLHT) mechanism leading to an alkyl(carbamoyl)cobalt intermediate.


Organics ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 107-117
Author(s):  
Mattia Forchetta ◽  
Valeria Conte ◽  
Giulia Fiorani ◽  
Pierluca Galloni ◽  
Federica Sabuzi

Owing to the attractiveness of organic phosphonic acids and esters in the pharmacological field and in the functionalization of conductive metal-oxides, the research of effective synthetic protocols is pivotal. Among the others, ω-bromoalkylphosphonates are gaining particular attention because they are useful building blocks for the tailored functionalization of complex organic molecules. Hence, in this work, the optimization of Michaelis–Arbuzov reaction conditions for ω-bromoalkylphosphonates has been performed, to improve process sustainability while maintaining good yields. Synthesized ω-bromoalkylphosphonates have been successfully adopted for the synthesis of new KuQuinone phosphonate esters and, by hydrolysis, phosphonic acid KuQuinone derivatives have been obtained for the first time. Considering the high affinity with metal-oxides, KuQuinones bearing phosphonic acid terminal groups are promising candidates for biomedical and photo(electro)chemical applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joaquin Caro-Astorga ◽  
Kenneth T. Walker ◽  
Natalia Herrera ◽  
Koon-Yang Lee ◽  
Tom Ellis

AbstractEngineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose.


2022 ◽  
Author(s):  
Zhi-Gang Yin ◽  
Xiong-Wei Liu ◽  
Hui-Juan Wang ◽  
Min Zhang ◽  
Xiong-Li Liu ◽  
...  

A highly efficient synthesis of structurally diverse ortho-acylphenol–diindolylmethane hybrids 3 using carboxylic acid-activated chromones as versatile synthetic building blocks is reported here for the first time, through 1,4-nucleophilic addition and followed by a decarboxylation and pyrone ring opening reaction process.


Author(s):  
Jens Staal ◽  
Wouter De Schamphelaire ◽  
Rudi Beyaert

Minimal plasmids play an essential role in many intermediate steps in molecular biology. They can for example be used to assemble building blocks in synthetic biology or be used as intermediate cloning plasmids that are ideal for PCR-based mutagenesis methods. A small backbone also opens up for additional unique restriction enzyme cloning sites. Here we describe the generation of pICOz, a 1185 bp fully functional high-copy cloning plasmid with an extended multiple cloning site (MCS). To our knowledge, this is the smallest high-copy cloning vector ever described.


2020 ◽  
Author(s):  
Shuaiyuan Han ◽  
Sandrine Pensec ◽  
Cédric Lorthioir ◽  
Jacques Jestin ◽  
Jean-Michel Guigner ◽  
...  

Janus cylinders are one-dimensional colloids that have two faces with different compositions and functionalities and are useful as building blocks for advanced functional materials. Such anisotropic objects are difficult to prepare with nanometric dimensions. Here we describe a robust and versatile strategy to form micrometer long Janus nanorods with diameters in the 10-nanometer range, by self-assembly in water of end-functionalized polymers. For the first time, the Janus topology is not a result of the phase segregation of incompatible polymer arms, but is driven by the interactions between unsymmetrical and complementary hydrogen bonded stickers. It is therefore independent of the actual polymers used and works even for compatible polymers. To illustrate their applicative potential, we show that these Janus nanorods can efficiently stabilize oil-in-water emulsions.


Author(s):  
Marc-Florian Uth ◽  
Heinz Herwig

In the field of synthetic biology, enzymatic pathways are used to enhance the efficiency of chemical production processes. These pathways consist of micro reactors that are filled with porous media and enzymes that catalyze the partial reactions. In the present study we summarize the requirements of the micro reactors used for these applications and give an overview of the different problems that have to be solved. Furthermore we present the idea of a generic demonstrator as a research tool. In the interdisciplinary field of synthetic biology it can enhance the interaction between different groups. It will serve as a common base for numerically as well as for experimentally working groups. We propose a definition of a generic demonstrator for a micro fluidic reactor as it is typically used in this field. Besides, present work of our group is presented, that analyzes the flow field in the micro channels of the reaction zone that is filled with porous media. We show how computational costs can be saved by studying the entry lengths of these channels.


2016 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Mahendra Maharjan ◽  
Swati Mandal ◽  
Rentala Madhubala

Failure of antimonial drugs, the mainstay therapy for leishmaniasis has become an escalating problem in the treatment of Indian leishmaniasis. Using 14 clinical isolates from both visceral (VL) and post-kala-azar dermal leismaniasis (PKDL) patients, we have examined the role of ATP-binding cassette transporter (ABC transporter) gene, multidrug resistant protein A (MRPA) and two building blocks of the major thiol, trypanothione namely, ornithine decarboxylase gene (ODC) (a rate limiting enzyme in the polyamine biosynthesis) and γ-glutamylcysteine synthetase (γ-GCS) (a rate limiting enzyme in glutathione biosynthesis) in antimony resistance. Amplification of these three genes was observed in some but not all clinical isolates. Increased expression of the three RNAs as determined by real-time PCR was observed in all SAG-R clinical isolates. Significant increase in cysteine and glutathione levels was observed in the resistant isolates. Our studies report the underlying mechanism of antimony resistance in the clinical isolates.


2020 ◽  
Author(s):  
Zhen Zhang ◽  
Chaoliang He ◽  
Yan Rong ◽  
Hui Ren ◽  
Tianran Wang ◽  
...  

Abstract Fast and catalyst-free cross-linking strategy is of great significance for construction of covalently cross-linked hydrogels. Here, we report the condensation reaction between o-phthalaldehyde (OPA) and N-nucleophiles (primary amine, hydrazide and aminooxy) for hydrogel formation for the first time. When four-arm poly(ethylene glycol) (4aPEG) capped with OPA was mixed with various N-nucleophile-terminated 4aPEG as building blocks, hydrogels were formed with superfast gelation rate, higher mechanical strength and markedly lower critical gelation concentrations, compared to benzaldehyde-based counterparts. Small molecule model reactions indicate the key to these cross-links is the fast formation of heterocycle phthalimidine product or isoindole (bis)hemiaminal intermediates, depending on the N-nucleophiles. The second-order rate constant for the formation of phthalimidine linkage (4.3 M−1 s−1) is over 3000 times and 200 times higher than those for acylhydrazone and oxime formation from benzaldehyde, respectively, and comparable to many cycloaddition click reactions. Based on the versatile OPA chemistry, various hydrogels can be readily prepared from naturally derived polysaccharides, proteins or synthetic polymers without complicated chemical modification. Moreover, biofunctionality is facilely imparted to the hydrogels by introducing amine-bearing peptides via the reaction between OPA and amino group.


Sign in / Sign up

Export Citation Format

Share Document