In vitro fertilization and preimplantation genetic testing methods in infertility treatment of a woman with karyotype 46,XX,ins(13;4)(q34;p14p15.3),inv(4)(p14q12). Case report

GYNECOLOGY ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 441-444
Author(s):  
Zhanna I. Glinkina ◽  
Elena V. Kulakova ◽  
Elena G. Lebedeva ◽  
Varvara S. Kuzmicheva ◽  
Nataliya P. Makarova

The frequency of structural chromosomal transpositions can range from 1.8 to 8% among patients with reproductive disorders. There are several types of the rarest chromosomal abnormalities: insertion (insertion of a chromosomal region) and inversion (rotation of a chromosome region). This article describes a clinical case of the infertility treatment using assisted reproductive technologies in a woman with a rare chromosomal abnormality: simultaneous insertion and inversion of chromosomes 46, XX, ins (13;4)(q34;p14p15.3), inv(4)(p14q12). The structure and frequency of chromosomal aberrations were determined by high-throughput sequencing in preimplantation embryos. The result of the sequencing analysis showed that unbalanced variants for a known pathology were detected in 9 (56.3%) out of 16 observations, while in 6 (37%) only for a pathology known in the karyotype and in 3 (19%) they were presented simultaneously with the pathology of other chromosomes or with mosaicism. According to the results of the study, in preimplantation embryos, where one of the parents had chromosomal abnormalities, in addition to unbalanced variants, there is aneuploidy of other chromosomes not involved in the known pathology. They are described in 3 (21%) out of 14 observations of all identified pathology. In this regard, patients with aberrations in the karyotype are recommended, whenever possible, to carry out preimplantation genetic testing of structural rearrangements by methods allowed to analyze all chromosomes simultaneously. For example, high-throughput sequencing on the Illumina platform may become an alternative for prenatal diagnostics, which is performed in fertile couples with high risk of having a child with hereditary or congenital disorders. In the case of detection of chromosomal changes in the fetus, patients are faced with a number of ethical issues related to the necessity for medical abortion, which may contradict their religious and moral convictions.

Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 602 ◽  
Author(s):  
Manuel Viotti

There is a high incidence of chromosomal abnormalities in early human embryos, whether they are generated by natural conception or by assisted reproductive technologies (ART). Cells with chromosomal copy number deviations or chromosome structural rearrangements can compromise the viability of embryos; much of the naturally low human fecundity as well as low success rates of ART can be ascribed to these cytogenetic defects. Chromosomal anomalies are also responsible for a large proportion of miscarriages and congenital disorders. There is therefore tremendous value in methods that identify embryos containing chromosomal abnormalities before intrauterine transfer to a patient being treated for infertility—the goal being the exclusion of affected embryos in order to improve clinical outcomes. This is the rationale behind preimplantation genetic testing for aneuploidy (PGT-A) and structural rearrangements (-SR). Contemporary methods are capable of much more than detecting whole chromosome abnormalities (e.g., monosomy/trisomy). Technical enhancements and increased resolution and sensitivity permit the identification of chromosomal mosaicism (embryos containing a mix of normal and abnormal cells), as well as the detection of sub-chromosomal abnormalities such as segmental deletions and duplications. Earlier approaches to screening for chromosomal abnormalities yielded a binary result of normal versus abnormal, but the new refinements in the system call for new categories, each with specific clinical outcomes and nuances for clinical management. This review intends to give an overview of PGT-A and -SR, emphasizing recent advances and areas of active development.


2019 ◽  
Vol 68 (5) ◽  
pp. 75-82
Author(s):  
Anna A. Smirnova ◽  
Natalya A. Zyryaeva ◽  
Diana O. Zhordanidze ◽  
Margarita B. Anshina ◽  
Evgeny F. Kira

Hypothesis/aims of study. Approximately 1015% of clinical pregnancies end in spontaneous abortions. The main cause of early miscarriages is chromosomal aberrations of the embryos. Chromosomal abnormalities are detected in 70% of sporadic miscarriages and in 3050 % of recurrent miscarriage. Modern assisted reproductive technologies allow not only to treat infertility, but also to provide access to embryos, which makes it possible to test them for hereditary diseases and chromosomal abnormalities before implantation. This study aimed to assess the efficacy of preimplantation genetic testing (PGT) in patients with infertility and early pregnancy loss. Study design, materials and methods. IVF outcomes were studied retrospectively in 84 patients under the age of 39 years. The first group consisted of 22 women with a normal karyotype, who underwent 34 IVF cycles with PGT for aneuploidies and 22 transfers of euploid embryos. The second group comprised 48 women with a normal karyotype, who underwent IVF treatment without PGT. In this group, we preformed 45 frozen and 18 fresh embryo transfers. The third group included 14 couples with chromosomal structural rearrangements, who underwent 22 IVF cycles with PGT for chromosomal structural rearrangements. Results. The cumulative pregnancy rate and the birth rate did not significantly differ between the study groups. The early miscarriage rate and the multiple pregnancy rate were significantly lower in groups with PGT compared to the group without PGT. The aneuploidy rate was significantly higher in women with two or more pregnancy losses in history compared to patients with only one pregnancy loss. Conclusion. The data obtained allow recommending IVF with PGT to women with recurrent pregnancy loss in order to avoid subsequent miscarriage.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 634-642
Author(s):  
Shiqiang Luo ◽  
Xingyuan Chen ◽  
Tizhen Yan ◽  
Jiaolian Ya ◽  
Zehui Xu ◽  
...  

High-throughput sequencing based on copy number variation (CNV-seq) is commonly used to detect chromosomal abnormalities. This study identifies chromosomal abnormalities in aborted embryos/fetuses in early and middle pregnancy and explores the application value of CNV-seq in determining the causes of pregnancy termination. High-throughput sequencing was used to detect chromosome copy number variations (CNVs) in 116 aborted embryos in early and middle pregnancy. The detection data were compared with the Database of Genomic Variants (DGV), the Database of Chromosomal Imbalance and Phenotype in Humans using Ensemble Resources (DECIPHER), and the Online Mendelian Inheritance in Man (OMIM) database to determine the CNV type and the clinical significance. High-throughput sequencing results were successfully obtained in 109 out of 116 specimens, with a detection success rate of 93.97%. In brief, there were 64 cases with abnormal chromosome numbers and 23 cases with CNVs, in which 10 were pathogenic mutations and 13 were variants of uncertain significance. An abnormal chromosome number is the most important reason for embryo termination in early and middle pregnancy, followed by pathogenic chromosome CNVs. CNV-seq can quickly and accurately detect chromosome abnormalities and identify microdeletion and microduplication CNVs that cannot be detected by conventional chromosome analysis, which is convenient and efficient for genetic etiology diagnosis in miscarriage.


Antibiotics ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 27 ◽  
Author(s):  
Marta Maciejewska ◽  
Magdalena Całusińska ◽  
Luc Cornet ◽  
Delphine Adam ◽  
Igor Pessi ◽  
...  

Author(s):  
Valerie Gutmann Koch

This chapter highlights the uses and ethical implications of preimplantation genetic testing and addresses the topic of liability as it applies to use of this technology to screen and select embryos for chromosomal abnormalities and genetic traits prior to implantation. When errors or wrongs occur, there may be significant medical, psychological, and economic implications for those individuals who sought preimplantation testing to avoid a genetic disease or to improve the chance of achieving pregnancy. Informed consent, wrongful birth, and wrongful life claims may be available to those who are harmed due to these errors.


Sign in / Sign up

Export Citation Format

Share Document