scholarly journals SEED HYDROPRIMING TECHNIQUE IN CEREAL CROPS: A REVIEW

2020 ◽  
Vol 1 (2) ◽  
pp. 85-88
Author(s):  
Dipika Bhusal ◽  
Dhirendra Pratap Thakur

Cereals contribute to 50% of total caloric intake and 95% of the total food requirement globally. Increasing climate change and population has increased the food demand and endangered the productivity of food crops due to various biotic and abiotic stresses and within these conditions’ world is trying to push itself towards increasing the grain yield per unit of land. Several methods of seed priming are practiced to rejuvenate the seeds and remove the environmental stress. Hydro priming, a method of seed priming, has prominent advantage of stresses resistance, better crop stand, and emergence. In order to cope with the future challenges of crop productivity knowledge on the beneficial effects of hydro priming is important. Hydro priming induces DNA repair processes and Antioxidant responses associated as pre-germinative metabolism that leads to early and better seedling growth. Seed Hydro priming may be the best solution to the germination related problems especially in crops grown in unfavorable conditions and enhanced activation of the plant defense mechanism describes this process. Defining the exact treatment duration, water volume, and temperature of water during Hydro priming can revolutionize the farming system with better results.

2020 ◽  
Vol 21 (21) ◽  
pp. 8258 ◽  
Author(s):  
Vishvanathan Marthandan ◽  
Rathnavel Geetha ◽  
Karunanandham Kumutha ◽  
Vellaichamy Gandhimeyyan Renganathan ◽  
Adhimoolam Karthikeyan ◽  
...  

Drought is a serious threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. Drought adversely affects seed germination, plant growth, and development via non-normal physiological processes. Plants generally acclimatize to drought stress through various tolerance mechanisms, but the changes in global climate and modern agricultural systems have further worsened the crop productivity. In order to increase the production and productivity, several strategies such as the breeding of tolerant varieties and exogenous application of growth regulators, osmoprotectants, and plant mineral nutrients are followed to mitigate the effects of drought stress. Nevertheless, the complex nature of drought stress makes these strategies ineffective in benefiting the farming community. Seed priming is an alternative, low-cost, and feasible technique, which can improve drought stress tolerance through enhanced and advanced seed germination. Primed seeds can retain the memory of previous stress and enable protection against oxidative stress through earlier activation of the cellular defense mechanism, reduced imbibition time, upsurge of germination promoters, and osmotic regulation. However, a better understanding of the metabolic events during the priming treatment is needed to use this technology in a more efficient way. Interestingly, the review highlights the morphological, physiological, biochemical, and molecular responses of seed priming for enhancing the drought tolerance in crop plants. Furthermore, the challenges and opportunities associated with various priming methods are also addressed side-by-side to enable the use of this simple and cost-efficient technique in a more efficient manner.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1270
Author(s):  
Daniele Del Buono ◽  
Alessandro Di Michele ◽  
Ferdinando Costantino ◽  
Marco Trevisan ◽  
Luigi Lucini

The need to increase crop productivity and resistance directs interest in nanotechnology. Indeed, biogenic metal oxide nanoparticles can promote beneficial effects in plants, while their synthesis avoids the environmental impacts of conventional synthetic procedures. In this context, this research aimed to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) using, for the first time, an extract of a wild and spontaneous aquatic species, Lemna minor (duckweed). The effectiveness of this biogenic synthesis was evidenced for comparison with non-biogenic ZnO-NPs (obtained without using the plant extract), which have been synthesized in this research. XRD (X-ray diffraction), FE-SEM (field emission gun electron scanning microscopy), EDX (energy dispersive x-ray spectroscopy), TEM (transmission electron microscope) and UV-vis (ultraviolet-visible spectrophotometry) showed the biogenic approach effectiveness. The duckweed extract was subjected to UHPLC-ESI/QTOF-MS (ultra high-pressure liquid chromatography quadrupole time of flight mass spectrometry) phenolic profiling. This untargeted characterization highlighted a high and chemically diverse content in the duckweed extract of compounds potentially implicated in nanoparticulation. From an application standpoint, the effect of biogenic nanoparticles was investigated on some traits of maize subjected to seed priming with a wide range of biogenic ZnO-NPs concentrations. Inductive effects on the shoot and root biomass development were ascertained concerning the applied dosage. Furthermore, the biogenic ZnO-NPs stimulated the content of chlorophylls, carotenoids, and anthocyanin. Finally, the study of malondialdehyde content (MDA) as a marker of the oxidative status further highlighted the beneficial and positive action of the biogenic ZnO-NPs on maize.


Author(s):  
K. P. Raj Aswathi ◽  
Hazem M. Kalaji ◽  
Jos T. Puthur

AbstractDrought stress exposure adversely affects plant growth and productivity. Various seed priming techniques are experimented to mitigate the adverse effect of drought stress on plant performance. It is a low-cost and sustainable technology that proved to be of immense potential to enhance drought tolerance and increase crop productivity. Drought episodes are followed by recovery through rain or irrigation and help the plants to recuperate from the damages caused by drought stress. The severity of drought-associated damages determines the recovery kinetics of plants. Under the recurrent cycle of drought events, recovery kinetics has immense importance in predicting the stress tolerance potential and survival status of a plant. Many processes like DNA damage repair, de-novo synthesis of nucleic acids and proteins, osmotic adjustment through the accumulation of osmolytes, the potential activity of antioxidant machinery occurring during seed priming play a significant role during recovery from drought stress. Alleviation of the severity of drought stress through the accumulation of osmolytes, the augmented activity of antioxidant machinery, improved photosynthetic performance, and the upregulated expression of stress-responsive genes attributed by seed priming will complement the recovery from drought stress. Although the beneficial effects of seed priming on drought tolerance are well explored, priming influenced recovery mechanism has not been well explored. There is a lacuna in the field of research related to the beneficial effects of seed priming for recovery from drought stress, and that is the focus of this paper.


2020 ◽  
Vol 134 (19) ◽  
pp. 2581-2595
Author(s):  
Qiuhong Li ◽  
Maria B. Grant ◽  
Elaine M. Richards ◽  
Mohan K. Raizada

Abstract The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin–angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein–coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.


2021 ◽  
Author(s):  
Margarida Arrobas ◽  
João V. Decker ◽  
Bruna L. Feix ◽  
Wilson I. Godoy ◽  
Carlos A. Casali ◽  
...  

2020 ◽  
Vol 38 (7) ◽  
pp. 753-761
Author(s):  
Sachin Kanta Rautaray ◽  
Rachana Dubey ◽  
Sachidulal Raychaudhuri ◽  
Sanatan Pradhan ◽  
Sheelabhadra Mohanty ◽  
...  

Annually 500 M t organic wastes are produced in India from the agriculture sector. Transportation of bulky organic manures for centralized collection, processing and distribution to farms is cost prohibitive. Hence, recycling of agricultural wastes using vermicompost technology at the farm level is a practical way of managing agriwaste for meeting the plant nutrient requirement. Our experience with a 1.584 ha farm for three years (2015–2016 to 2017–2018) revealed that 8.1 t vermicompost was produced in three batches from 24 t agriwastes produced within the farm area. The system productivity by recycling these farm generated agriwastes and run-off water was 18.05 t (≈11.4 t ha−1) rice equivalent yield which was higher by 2.6 times as compared to rice fallow (4.46 t ha−1). Also, the net return from this system (Indian rupees 70141 ha−1) was higher by 2.3 times, after considering the fixed cost towards construction of a water recycling pond. An increase in carbon stock in soil for the four years study period was 0.66 Mg ha−1 year−1 with the agriwaste recycling system under organic nutrition. For the inorganic fertilizer plot, the increase in carbon stock was 0.53 Mg ha−1 year−1. A decrease in bulk density from 1.56 to 1.46 Mg m−3, increase in water holding capacity from 0.43 to 0.52 cm3 cm−3 and increase in available P and K content in soil from 38.0 and 174.7 kg ha−1 to 45.8 and 186.5 kg ha−1, respectively, were noted. Thus, recycling of agricultural waste at the farm level is useful in improving soil health and crop productivity.


2012 ◽  
pp. 26-44
Author(s):  
Suprana Biswas ◽  
Nabanita Chakraborty ◽  
Supriya Chakraborty

Flavoring compounds of plants play a significant role in plant defense mechanism. Compound responsible for strong sour tamarind flavor has been isolated and identified from Methanol fraction of tamarind leaves (TrMF). Chromatographic and spectral analyses of TrMF revealed the compound to be methyl 2,3,4- trihydroxyhexanoate. This compound showed a strong antioxidant activity as well as strong antimicrobial activity. It showed significant antioxidant activity with Ic50 value of 2.5μg/ml whereas tert-butyl-1-hydroxytoluene and ascorbic acid revealed 26.0μg/ml and 5.0μg/ml, respectively. It also revealed strong inhibitory activity against Aspergellosis disease-causing fungi namely; Aspergillus fumigatus, Aspergillus tamarii and Aspergillus niger at all concentrations. Streptococcus aureus and Escherichia coli were much more sensitive to methyl-trihydroxy-hexanoate at all concentrations than Pseudomonas aeruginosa. This pure compound exhibited concentration dependent inhibitory and stimulatory activity on rice seeds germination and seedling growth. It showed strong inhibitory activity up to 62.5ppm concentration and below this concentration the effect was stimulatory. Methyl- trihydroxyhexanoate exhibited wide range of defensive activity against microbes and crop seeds and also possesses potent antioxidative activity. Thus play an important role in plant defense mechanism and can be utilized as a valuable source of bio-herbicides and pesticides.


Sign in / Sign up

Export Citation Format

Share Document